

PicoRio User Manual

Contents:

	General Documentation
	Introduction

	Project Roadmap

	FAQ

	Hardware Projects

	Software Projects

General Documentation

Contents:

	Introduction
	What is PicoRio

	Motivation

	Highlights

	Project Roadmap
	Three Phases of the PicoRio Development

	FAQ
	How is PicoRio compared to Raspberry Pi?

Introduction

What is PicoRio

PicoRio is an open-source project stewarded by the RISC-V International Open Source (RIOS) laboratory [http://rioslab.org], a nonprofit research lab at Tsinghua-Berkeley Shenzhen Institute (TBSI). The RIOS Lab focuses on elevating the RISC-V software and hardware ecosystem collaboratively with both academia and industry. In PicoRio, we create an open, affordable, Linux-capable RISC-V hardware platform to help software developers port modern applications that require Javascript or GPUs. PicoRio will build upon high-quality IPs and software components contributed by experts from industry and academia. PicoRio is not proprietary to any specific vendor or platform, and will have complete documentation that can help users build high-quality products in a short amount of time.

Motivation

	A system is more than processors
	
	Large cost to license other IPs in SoC: cache, interconnects, graphics, camera ISP, etc

	An attractive open-source platform to experiment new hardware ideas

	Full-system support is indispensable to security and trusted executions.

	RISC-V hardware extensions: JIT runtime, vectorization, etc

	The community lacks affordable RISC-V hardware platforms that is capable of executing diverse softwares
	
	Few low-cost, software-capable boards for the long tail of developers

	Developers won’t spend $1000 for a new hardware just for software development

Highlights

	Independently Maintained: The RIOS Lab is an independent nonprofit organization that governs the architecture development, ensures compliance, and will publish the design. The RIOS Lab will be the gatekeeper for both hardware and software, from SoC and firmware/drivers to high-level software and documentation. PicoRio will be vendor agnostic and non-proprietary. The RIOS Lab will work with academic and commercial organizations that will commit to its expansion and volume manufacturing.

	Open Source: PicoRio will open source as many components as possible, including the CPU and main SoC design, chip package, board design files, device drivers, and firmware. The exceptions are foundry related IPs (e.g., TSMC SRAM configurations), commercial high-speed interfaces, and complex commercial IP blocks like GPU. Nevertheless, our goal is to reduce the commercial closed source IPs for each successive release of PicoRio, with the long term goal of having a version that is as open as possible.

	High-Quality IPs: A major goal of the RIOS lab is developing open source, hardware IPs with industrial quality to boost the growth of RISC-V ecosystem and compete with those of existing, proprietary ISAs. Thus, PicoRio aims at a high-quality silicon release using open-source IPs. Such IPs will have gone through rigorous tapeout verifications that meet industry quality. The openness of PicoRio will not come at the cost of lower quality IP blocks. In addition, we will open source our verification process, which can further enhance transparency and trustworthiness.

	Modern Software Stack Support: PicoRio utilizes a heterogeneous multicore architecture and it is Linux-capable (RV64GC). We also designed PicoRio hardware to run modern managed languages such as JavaScript/WebAssembly as well as graphical applications like the Chrome web browser. In the RIOS Lab, PicoRio is also the hardware platform for several other open-source software projects, such as the RISC-V ports for the V8 Javascript engine and the Chromium OS.

	Low-Power and Low-Cost: The target metrics of PicoRio are low power dissipation and cost, which is a perfect match to the target of RISC-V system design.

Project Roadmap

Three Phases of the PicoRio Development

We aim to incrementally improve PicoRio with each new release. We divide the development of PicoRio into three phases:

	First Phase (PicoRio 1.0): We include a basic 64-bit quad-core cache-coherent design (RV64GC) that runs full Linux. We have already booted a Chromium OS kernel in command line mode. A standalone version of Chrome V8 Javascript engine will run directly on the kernel. We expect an early beta release late this year. This “headless” version of PicoRio should be fine for software development.

	Second Phase (PicoRio 2.0): In addition to the hardware improvement of the PicoRio v1.0, we are working with Imagination™ to include a complete display pipeline (including a GPU) with video encode/decode capabilities to run graphics intensive applications like web browsers.

	Third Phase (PicoRio 3.0): Building upon the v2.0 hardware, we plan to further improve the CPU performance to bring PicoRio to the level of a pad computer or laptop.

FAQ

How is PicoRio compared to Raspberry Pi?

Inspired by the Raspberry Pi, we propose the PicoRio project, whose goal is to produce RISC-V based small-board computers at an affordable price point. PicoRio has differences in the following aspects:

	Open Source: Unlike Raspberry Pi, which uses proprietary Broadcom SoCs, PicoRio will open source as many components as possible, including the CPU and main SoC design, chip package and board design files, device drivers, and firmware. Nevertheless, our goal is to reduce the commercial closed source IPs for each successive release of PicoRio, with the long term goal of having a version that is as open as practical.

	Low-Power and Low-Cost: The target metrics of PicoRio are long battery life and low cost, which is a better match to RISC-V today, instead of high performance and large memory. In contrast, Raspberry Pi uses more power hungry ARM processors. For example, the idle power consumption has risen from 0.4 Watts to 2.7 Watts in the latest version of Raspberry Pi.

Hardware Projects

This section describes the specification of PicoRio hardware components.
We have grouped all the components into 4 general classes according to their respective functionalities.
The development status is also listed.

	Component

	Description

	Pygmy_ES1Y Board

	Pygmy_ES1Y EVB User Guide

	RRV64 Core

	RRV64 core used in PicoRio: a 64-bit, single in-order
issue, 5-stage-pipeline 64-bit RISC-V core.

	Graphics

	Collection of display pipeline in PicoRio™.
This includes the GPU, display core, and video encoder
and decoder.

	Cache System

	Private L1 instruction & data cache and unified L2
cache.

	System Control

	System control related features and units

	IO

	Collection of input and output interfaces
in PicoRio hardware.

The overall PicoRio™ hardware blockdiagram (future work included):

[image: _images/hwstack_blockdiagram_stage3.png]

Pygmy_ES1Y Board

Pygmy_ES1Y chip Introduction

[image: ../_images/board1.png]

[image: ../_images/board2.png]

Pygmy_ES1Y EVB Hardware

Pygmy_ES1Y EVB Hardware configuration

[image: ../_images/board3.png]

Pygmy_ES1Y EVB expansion port

[image: ../_images/board4.png]

Expansion port1 J28 40pin GPIOs Define

[image: ../_images/board5.png]

Expansion port2 J29 40pin GPIOs Define

[image: ../_images/board6.png]

Pygmy_ES1Y share IO (multifunction)

[image: ../_images/board7.png]

How to use EVB?

Pygmy_ES1Y EVB boot configuration

[image: ../_images/board8.png]

[image: ../_images/board9.png]

Pygmy_ES1Y EVB interface switch

[image: ../_images/board10.png]

Pygmy_ES1Y EVB debug

[image: ../_images/board11.png]

RRV64

Contents:

	Overview

	Repository Organization

	Getting Started
	Get the Source Code

	Prerequisites

	Compile & Run simulation

	Core design
	Fetch

	Decode

	Execute

	Memory Access

	Instruction Buffer

	Loop Buffer

	Address Translation

	Exception Handling

	Privileged Extensions

Overview

RRV64 is a 64-bit RISC-V Core designed for embedded applications.
It has a 5 stage in-order pipeline and multi-level cache system including
L1 and L2 I/D caches. RRV64 supports RV64IMAC instruction sets,
Sv39 Virtual Address format, legal combinations of privilege modes in
conjunction with Physical Memory Protection (PMP). It is capable of running
a full-featured operating system like Linux. The core is compatible with all
applicable RISC‑V standards.

RRV64 is designed to be feature a very flexible memory system that includes L1 caches, L2 caches, bus interfaces, and memory maps that provide a lot of flexibility for SoC integration.

[image: ../../_images/core_overview.png]
Fig. 1 Core Overview

Fig. 1 illustrates a simplified RRV64 pipeline

Repository Organization

The following shows the main folders in RRV64 repository and their usage:

.
|─rtl --RRV64 RTL description using SystemVerilog code
│ ├─common --Macro and parameter definition files
│ ├─lib --Components used in RRV64, such as FIFO, RAM, etc
│ └─rrv64 --RRV64 Core
└─tb --Benchmarks, testbenchs and Makefile for simulation
 ├─rrv64 --The testbench of the top-level module for simulation
 ├─perfect_mem_model --The testbench of an ideal L2Cache
 └─test_program --Benchmarks for testing the CPU
 └─benchmarks

Getting Started

Get the Source Code

You can clone the source code of RRV64 along with its simulator using git:

$ git clone https://gitlab.com/picorio/rrv64.git

Prerequisites

Several tools are needed to build the project.

1. Verilator [https://www.veripool.org/projects/verilator/wiki/Installing] : SystemVerilog Translator and simulator

On Ubuntu, executing the following command should suffice:

$ sudo apt-get install verilator

For other OS, you can install Verilator with Git. See here [https://www.veripool.org/projects/verilator/wiki/Installing/] for more information.

2. Gtkwave [http://gtkwave.sourceforge.net/] : Wave viewer

To make use of Verilator waveform tracing, you will need to have GTKwave installed.

3. RISC-V GNU Compiler Toolchain [https://github.com/riscv/riscv-gnu-toolchain]

	Choose Newlib for installation.

	For RRV64, the configuration should be: ./configure --prefix=/opt/riscv --with-arch=rv64gc --with-abi=lp64d

	To add $PATH into PATH, If you choose, say, /opt/riscv as prefix:

$ vim ~/.bashrc

append export PATH=$PATH:/opt/riscv/bin into .bashrc file, then save & exit, then

$ source ~/.bashrc

Compile & Run simulation

With VCS

To compile RRV64 with VCS

$ cd rrv64/tb
$ make vcs

And then it will be compiled by VCS, to run the simulation

$ make vcs_run

The default program to be executed is Dhrystone

With Verilator

Verilator [https://github.com/verilator/verilator] is an open-source simulator, it provides verilog/systemverilog compilation function similar to VCS.

	Build RRV64 and run program with RRV64 in Verilator

$ cd rrv64/tb
$ make ver

And then it will be compiled by Verilator, to run the simulation

$ make ver_run

The Dhrystone program is executed by default. You will see the execution result of Dhrystone in about one minute.

	To change the program running in the RRV64 processor, edit the file rrv64/tb/rrv64/top.sv, input the path to the binary file you want to execute.

Check the Waveform file

With the argument +trace after ./Vtestbench,
the program will produce a waveform file with suffix .vcd in the folder logs
under its corresponding folder prefixed with sim_.

To check the waveform file, we use Gtkwave [http://gtkwave.sourceforge.net/],
say the .vcd file named vlt_dump.vcd:

$ gtkwave vlt_dump.vcd

Core design

Fetch

Instruction Fetch (rrv64_fetch) is the first pipeline stage in RRV64. This block is responsible for initiating requests for instruction data by sending requests to the instruction buffer and loop buffer. If one of the two buffers hits, the instruction data will be available in the next cycle. Otherwise, the instruction buffer will send a request to I-Cache to obtain the instruction data. Such process will take several cycles of delay. The IF module is also responsible for generating the address of the next instruction. It receives PC requests from other pipeline stages and arbitrates using a fixed priority scheme. The modules that act as PC sources are listed below, from the highest priority to the lowest.

rrv64_csr: Sends PC on exceptions, interrupts and trap return instructions.

rrv64_execute: Sends PC when a branch instruction taken.

rrv_mem_access: Sends PC when completing a fence.i instruction and when some of CSR registers have been modified. For fences, the PC request is delayed until all fetches before the fence instruction are completed and I-Cache is flushed. This is in case of any self-modifying code. For CSR modifications, delaying the PC request ensures that the CSR operation will use the correct values.

rrv_fetch: Sends PC for the normal case (next PC=PC+4 or PC+2 for compressed instructions), immediate jumps and register jumps.

Interfaces

if2ic/ic2if: These interfaces are used for sending PC fetch requests from IF to instruction buffer and loop buffer. This interface uses an enable signal to send requests. This enable signal is held high until a response is received. There are 2 signals in if2ic interface:

	pc: The address of the requested instruction.

	valid: If this request is valid.

On the response side (ic2if), the main signals are:

	inst/rvc_inst: The instruction data.

	valid: Whether this response is valid.

	is_rvc: Whether the instruction is RVC or not.

	excp_cause: Contains the exception cause of the instruction, if any.

	excp_valid: Whether this instruction was found to have an exception.

if2id: This interface contains all the data that is passed from IF to ID. It works using a valid/ready handshake. There are 2 signals in this interface.

	inst: The instruction data.

	pc: The PC of the instruction.

cs2if_npc/ma2if_npc/ex2if_npc/id2if_npc: These interfaces are used for sending PC redirection request to IF. They work using a valid/ready handshake. There are 2 signals in these interfaces.

	pc: The new value of the PC register.

	valid: Whether the request is valid.

Decode

Decode (ID) is the second stage in RRV64’s pipeline. It receives instruction data from the IF stage and hold it if necessary, expands C-extension instructions, decodes instruction data to set the control signals, and sends read requests to the regfile. When encountering an illegal instruction, the decoder will generate an exception signal, which will be handled when the current instruction reaches the MA stage.

The RRV64 implements the standard compressed extension to the RISC-V architecture, which allows for 16-bit, in addition to the normal 32-bit instruction size. To handle this new size of instructions, ID contains a submodule that takes the 16-bit instructions and expand it to its 32-bit equivalent. This module acts as the first layer of decoding.

After ID has the final instruction data, either the expanded compressed instruction, or the initial instruction data, it will begin to decode the instruction to determine how to set the control signals that will be used throughout the pipeline. In the RTL, you can find a case statement that will call different functions depending on the instruction’s opcode, funct7 field, funct5 field, etc. These functions will output the appropriate control signals.
If the instruction needs to read the register, ID will asynchronously read the registers in rrv64_regfile (IRF). Since IRF doesn’t contain a real entry for x0, ID will instead substitute this read with a hardwired 0 signal.

If ID decodes its current instruction as a JAL instruction, it will calculate the destination address and send a redirect request to the IF stage. If it is a fence_i, mret, or a csr operation on the PMP related registers, the ID will stall the IF stage until the instruction is retired.

There is a Regfile Scoreboard in this stage. Its purpose is to track which registers still have pending writes. This is used to resolve data hazards. When ID decodes that its instruction will eventually write to the regfile, it indexes into the scoreboard using rd (the index of the destination register) and marks that entry, to signal that there is a pending write, and thus a possible data hazard. When that instruction eventually writes to the regfile, that scoreboard entry is cleared.
If ID has an instruction and with one, or both, of its source registers indicating pending writes, it will use the data pushed forward from EX stage or wait for the data retrieved from the memory.

Interfaces

id2irf: This interface is for requesting the data in the IRF. There are 4 signals.

	rs1_addr: The address of source register 1.

	rs2_addr: The address of source register 2.

	rs1_re: Control signal. High when read to rs1_addr is valid.

	rs2_re: Control signal. High when read to rs2_addr is valid.

id2ex: This interface contains all the data passed from ID to EX. It works on a valid/ready handshake. There are 6 signals in this interface.

	pc: The PC of the instruction.

	inst: The instruction data.

	rs1_addr: The address of source register 1.

	rs2_addr: The address of source register 2.

	is_rvc: Signals whether this instruction is RVC, used to calculate npc in EX and MA stage, if needed.

ex2id_bps/ma2id_bps: These interfaces are used for data forwarding: send the execution result of the EX/MA stage back to the EX stage to solve data hazard. There are 4 signals in this interface.

	valid_addr: Indicating whether the address of register accessing or memory accessing is valid.

	valid_data: Indicating whether the data of register accessing or memory accessing is valid.

	addr: The address of register accessing or memory accessing. Used to compare with the address to be accessed by the instruction in the ID stage.

	data: The data in register accessing or memory accessing.

Execute

The execute stage is responsible for calculations and sending memory requests to the LSU. This stage consists of an arithmetic and logic unit (ALU), a pair of multi-cycle multiplier and divider, a branch address calculation unit and a load/store address calculation unit.

ALU: The ALU is responsible for additions, subtractions, shifts, data comparisons (for branches and slt instructions), and bit-wise logical operations (AND, OR, XOR). The ALU is fed with the operands as well as the operation type. The logic in ALU is purely combinational.

Multiplier: The multiplier is used for multiplications. It is fed the operands as well as the multiplication type. The start_pulse input of the multiplier is set to 1 for 1 cycle to trigger the multiplication operation. The complete output is set to 1 when the multiplication is done. For multiplications where only the lower 64 bits of the result are needed, the calculation completes in the same cycle the start_pulse is set to 1. For multiplications where the upper 64 bits of the result are needed, the calculation completes in 3 cycles.

Divider: The divider is used for division operations. The divider is fed with the operands as well and the division type. The divider triggers the calculation when start_pulse input is set to 1. The complete output is set to 1 when DIV is done. DIV takes 17 cycles to accomplish a division operation.

The target address of the branch and the address of load/store instructions are calculated by the branch address calculation unit. For a branch instruction, if the branch is taken, a flush signal will be sent to IF and ID to “flush” the instructions in those stage, and a redirection signal will be sent to IF and the value of PC will change accordingly. For load/store instruction, the memory access request will be sent to D-Cache, so if D-Cache hits, we can the get the memory access result at MA stage in the next cycle.

Interfaces

ex2ma: This interface contains all the data passed from EX to MA. It works on a valid/ready handshake. There are 6 signals in this interface.

	pc: The PC of the instruction.

	inst: The instruction data.

	ex_out: The result of EX’s calculation.

	rd_addr: The address of destination register 1, if any.

	csr_addr: The address of csr register, if any.

	is_rvc: Whether this instruction is RVC.

ex2dc: This is the interface between EX and D-Cache, used for sending memory requests. It uses a valid/ready handshake. There are 5 signals in this interface.

	rw: 1 if the request is a write, 0 if it is a read.

	mask: The byte mask for Store operation.

	addr: The memory request address.

	wdata: The write data of the memory request.

	width: The width of the operand of Load/Store operation.

Memory Access

This stage is responsible for receiving memory responses from D-Cache, interfacing with rrv_csr (CSR), sending redirection requests to IF in certain cases, and committing instructions and writing data to Register Files.

For load and store instructions, MA will receive memory responses from D-Cache. Only 1 memory response is accepted per instruction. Loads will respond with the data read from memory, while stores will respond with 0 data. The data will be pushed forward to the ID stage through the bypass network to solve possible data hazard.

For CSR instructions, the MA stage will read and write the CSR Registers.

For fence or those csr operations on the PMP related registers, MA will send a npc signal to the IF stage to release the stall state of the IF, ID and EX stages.

For instructions with destination register and without any exceptions, it is at MA stage that the result will write to the regfile. Regfile writes are synchronous.

Interfaces

dc2ma: This interface is the memory response interface between D-Cache and MA. There are 4 signals in this interface.

	rdata: The read data requested by load instructions.

	excp_valid: Signals whether the memory access operation cause an exception (e.g. violated a PMP check).

	excp_cause: Contains the exception cause of the instruction, if any.

	valid: Whether the response is valid.

ma2cs/ma2cs_ctrl: These interfaces are used by MA for sending read/write requests to CSR. The ma2cs_ctrl is for controlling transactions with CSR. In ma2cs_ctrl, there are 3 signals in this interface:

	csr_op: CSR operation type. It can be set to RRV64_CSR_OP_RW (read and write), RRV64_CSR_OP_RS (read and set), RRV64_CSR_OP_RC (read and clear) and CSR_OP_NONE if MA does not have a request to CSR.

	ret_type: Return instruction type (mret or uret). It will be set to RET_TYPE_NONE if the instruction is not either of the ret type instructions mentioned.

	is_wfi: Set to 1 if the instruction is a WFI instruction.

For ma2cs, there are 5 signals in this interface:

	pc: PC of the current instruction. Used mainly for exception handling.

	csr_addr: Request CSR address.

	csr_wdata: Data used for do some calculation with data in CSR, the calculation result will be written back to the CSR.

	rs1_addr: rs1 address of the instruction. Used for checking if the CSR operation should be considered a write.

	mem_addr: Memory address of the load or store instruction. Used for updating the MTVAL CSR on load/store PMP exceptions.

ma2irf: This interface is used by MA to send regfile writes to IRF. Writes will be validated using an active high write enable signal. Including the enable signal, there are 3 signals in this interface:

	rd: Write data.

	rd_addr: Regfile write address.

	rd_we: Write enable.

Instruction Buffer

The instruction buffer is mainly used to prefetch instructions from L1 Cache. In addition to the instruction requested by the IF, the instruction buffer also fetches the instructions of the next two cache lines. If the execution flow is sequential, or there is a forward jump whose span is less than two cache lines, the instruction buffer will hit and return the instruction data within one cycle since we have already fetch it before.
When a branch or jump instruction is taken and the instruction corresponding to the destination address is not currently in instruction buffer, the instruction buffer will be flushed and send a request to ICache.

Loop Buffer

Loop buffer is a high speed D-Cache type memory that is used for holding up to 64 of the most recently fetched instructions. It is maintained by the IF stage of the pipeline. If a branch instruction is taken, we can first check the loop buffer to see if the instruction exists. If the loop buffer hits, the instruction data will be returned to IF within a cycle. If not, the loop buffer will wait for the instruction data be fetched from instruction buffer or L1 Cache and use this instruction to replace the oldest instruction in loop buffer.

Address Translation

To support an operating system, RRV64 features full hardware support for address translation via a Memory Management Unit (MMU). It has separate configurable data and instruction TLBs. The TLBs are fully set-associative memories. On each instruction and data access, they are checked for a valid address translation. If none exists, RRV64’s hardware PTW queries the main memory for a valid address translation. The replacement strategy of TLB entries is Pseudo Least Recently Used (LRU).

Both instruction cache and data cache are virtually indexed and physically tagged and fully parametrizable. The address is split into page offset (lower 12 bit) and virtual page number (bit 12 up to 39). The page offset is used to index into the cache while the virtual page number is simultaneously used for address translation through the TLB. In case of a TLB miss the pipeline is stalled until the translation is valid.

Exception Handling

Exceptions can occur throughout the pipeline and are hence linked to a particular instruction. The first exception can occur during instruction fetch when the PTW detects an illegal TLB entry or the address is not aligned. During decoding, exceptions can occur when the decoder detects an illegal instruction. As soon as an exception has occurred, the corresponding instruction is marked and auxiliary information is saved.
Such excepting instruction will be handled by the exception handler at the MA stage.

Interrupts are asynchronous exceptions, in RRV64, they are synchronized to a particular instruction. Like exception, the interrupt signal will be processed in the MA stage.

Privileged Extensions

The privileged specification defines more CSRs governing the execution mode of the hart. The base supervisor ISA defines an additional interrupt stack for supervisor mode interrupts as well as a restricted view of machine mode CSRs. Accesses to these registers are restricted to the same or a higher privilege level.

CSR accesses are executed in the MA stage. Furthermore, a CSR access can have side-effects on subsequent instructions which are already in the pipeline e.g. altering the address translation infrastructure. This makes it necessary to completely flush the pipeline on such accesses.

Cache

Contents:

	Cache overview
	Single core

	Multi-core

	L1 Cache
	L1 Data Cache

	L1 Instruction Cache

	L2 Cache
	Overview

	L2 cache pipeline

Cache overview

So far, the RRV64 core is equipped with private L1 instruction & data cache and unified L2 cache, the coherent L1 data cache is in progress.

The overall design of our internal memory hierarchy is illustrated in following blockdiagram.

Single core

[image: ../../_images/internal_memory_blockdiagram4.png]
Fig.1 Single cache system

Multi-core

[image: ../../_images/internal_memory_blockdiagram3.png]
Fig.2 Multi-core cache system

L1 Cache

L1 Data Cache

As part of the memory hierarchy, the L1 data cache helps cut down memory access time of cpu.
In that the L1 D-Cache is private, the cache coherence among multicores is a major problem to settle.
The design and implementation of cache coherent scheme and other design details are work
in progress.

Parameter

The parameter of L1 data cache is as follows:

	Cache capacity

	Cache line numbers

	Cache line capacity

	Mapping method

	32 KBytes

	512

	32 Bytes

	2-way set associative

L1 Instruction Cache

As part of memory hierarchy, the L1 instruction cache helps cut down the latency of cpu instruction fetching.

The parameter of L1 instruction cache is as follows:

	Cache capacity

	Cache line numbers

	Cache line capacity

	Mapping method

	8 KBytes

	128

	32 Bytes

	2-way set associative

L2 Cache

Overview

The L2 cache is a 256KB, 4-bank, 4-way set associative shared L2 cache.
The latency of L2 cache is 4 cycles at hit. The L2 cache RAM reading
and writing processes are pipelined into 4 stages for less RAM access
and higher frequency. The L2 cache is designed as a non-blocking cache
which can handle hit-under-miss and miss-under-miss using the Missing
Status Holding Registers (MSHRs). With non-blocking L2 cache design,
memory system can execute out-of-order and more latency can be hidden.

[image: ../../_images/l2_1.png]
Fig.1 L2 cache bank connection

Parameter

The parameter of L1 data cache is as follows:

	Cache capacity

	Cache line numbers

	Cache line capacity

	Mapping method

	256 KBytes

	512

	32 Bytes

	4-way set associative

L2 cache pipeline

The L2 is designed as 4-stage-pipeline for low power and high frequency.
In the first 3 stages, valid, tag, lru, dirty and data RAMs are serially checked,
which means some of the RAMs are not needed to be accessed if the information got
from previous stages tells the control logic not to.

The Missing Status Holding Registers lie in the stage 4, which has the ability to
hold multiple cache missed request to the next level memory, without blocking the
whole pipeline. This is a key feature for Out-of-Order memory system.

[image: ../../_images/l2_2.png]
Fig.2 L2 cache pipeline overview

Contributing

We highly appreciate community contributions. If you want to do contribution to the project, please:

	Create your own branch to commit your changes and then open a Pull Request.

	Split large contributions into smaller commits addressing individual changes or bug fixes. Only include one change in per commit.

	Write meaningful commit messages. For more information, please check out the commit guide.

	If asked to modify your changes, do fixup your commits and rebase your branch to maintain a clean history.

Commit guide

	Create your branch to commit your changes and then create a Pull Request.

	Separate subject from body with a blank line.

	Capitalize the subject line.

	Use the present tense (“Add feature” not “Added feature”).

	Use the body to explain what and why and how.

Software Projects

This section describes the software projects which PicoRio supports. We put all projects in a dashboard, and list out the current developing status of them.

	Projects

	Development State

	Project Description

	Link

	Firmware

	
	ES1Y Firmware includes Debug socket, ES1Y SDK and
ES1Y API.

	https://gitlab.com/picorio/picorio-software

	V8

	
	V8 is a commonly used JavaScript engine in
popular web browsers. PicoRio provides
support for RISC-V V8.

	https://github.com/v8-riscv/v8/

	Chromium OS

	
	Chromium OS is a open-source web browser
with strong web application support and rich
software ecosystem. This project is RISC-V
port of Chromium OS, and is in development.

	

Firmware

Contents:

	Debug socket introduction
	Debug-socket

	Debug-socket supported command list

	Classical debug process

	ES1Y SDK v1.0 Introduction
	1. Getting start

	2. How to code

	3. Programming API

	ES1Y API
	OS API

	UART API

	GPIO API

	Projects

	Project Description

	Debug socket

	Debug-socket is proxy running on host to interact
with target, the functionality of debug-socket
in software development.

	ES1Y SDK

	ES1Y SDK v1.0 provides freertos for customers’
application development, what’s more, there are
some system test demos included in rvSDK so as
to help the new customers get on hand quickly.

	ES1Y API

	Includes OS API, UART API, GPIO API

Debug socket introduction

Debug-socket

Debug-socket is proxy running on host to interact with target,
the functionality of debug-socket in software development, as
shown in the following picture.

[image: ../../_images/ds1.png]
Fig.1 Socket debug in SW development

According to the riscv-debug specification, if any kernel contains
standard debug modules, simply follow the: “RISC-V external debugging
support version xxx”. For standard debug module:

[image: ../../_images/ds2.png]
Fig.2 RISC-V debug overview

We choose to use a software-based debug socket instead of a standard
debug module to implement the debug function, both of which have the
same effect and can be used for debugging of the soc. For our debug-socket,
see debug-socket connections overview.

[image: ../../_images/ds3.png]
Fig.3 Debug socket connection overview

Basically, the debug-socket implements basic functions required by gdb,
with the help of hardware-provided breakpoint, watchpoint, trace buffer,
and many other features.

Debug-socket supported command list

The full-stack debug tool development is under way, you can use the
raw debug-socket interface to debug for now. Debug socket offers a big
list of commands, however the following commands are the ones used most
frequently:

	Command

	Usage

	Function

	b0

	b0 addr

	set a breakpoint at hw breakpoint 0 with addr

	b1

	b1 addr

	set a breakpoint at hw breakpoint 1 with addr

	b2

	b2 addr

	set a breakpoint at hw breakpoint 2 with addr

	b3

	b3 addr

	set a breakpoint at hw breakpoint 3 with addr

	d0

	d0

	disable breakpoint at hw breakpoint 0

	d1

	d1

	disable breakpoint at hw breakpoint 1

	d2

	d2

	disable breakpoint at hw breakpoint 2

	d3

	d3

	disable breakpoint at hw breakpoint 3

	wp (not supported for now)

	wp

	show watchpoint configure

	bp

	bp

	show breakpoint configure

	c

	c

	continue to run

	stall

	stall

	make cpu stall

	step N

	step N

	run next N instructions

	gpr(not supported for now)

	gpr

	print all general purpose register

	q

	q

	quit debug-socket

	wb_pc

	wb_pc

	show current excute instruction pc

	if_pc

	if_pc

	show current fetch instruction pc

	minstret

	minstret

	show m-mode excuted instruction count

	mstatus

	mstatus

	show mstatus value

	mcause

	mcause

	show mcause value

	mepc

	mepc

	show mepc value

	mip

	mip

	show mip value

	mie

	mie

	show mie value

	hpmcounter_3~hpmcounter_10

	hpmcounter_3
hpmcounter_4
hpmcounter_5
hpmcounter_6
hpmcounter_7
hpmcounter_8
hpmcounter_9
hpmcounter_10

	show PMU counter values

	dump

	dump 0x00f00000
0x00f00080 rb/dma

	dump content from start address to end address

	read

	read 0x00f00000 rb/dma

	read content from specified address, rb for
device register & dma for memory

	write

	write 0x00f00008 1 rb/dma

	write value to specified address, rb for device
register & dma for memory

	uart1

	uart1

	show uart1 cfg

	gpio

	gpio

	show gpio cfg

	rtc

	rtc

	show rtc cfg

	wdt

	wdt

	show wdt cfg

	i2c0

	i2c0

	show i2c controller’s cfg

Classical debug process

When encounter some error in program, you can use debug-socket to debug the program:

1. type ‘minstret’ twice to analysis if the CPU is stall or not, if the two values
of minstret is the same value, the CPU is stalled

: minstret
Do Read to Addr 0x1002b0 (minstret), Got Data 0x2409734f
Please enter command: (All Data in HEX no matter 0x is added or not)
: minstret
Do Read to Addr 0x1002b0 (minstret), Got Data 0x240aa177
Please enter command: (All Data in HEX no matter 0x is added or not)
:

	if the CPU is not stalled, type ‘wb_pc’

: wb_pc
Do Read to Addr 0x100258 (wb_pc), Got Data 0x80009430
Please enter command: (All Data in HEX no matter 0x is added or not)
:

	use ‘b0 addr’ to set a breakpoint, the program will stop when run into addr

: b0 80008e48
add breakpoint0, pc_addr = 0x80008e48
Please enter command: (All Data in HEX no matter 0x is added or not)
:

	then, you can use ‘read addr dma’ to check some var value

: read 800102c4 dma
Do Read to Addr 0x800102c4, Got Data 0x6ffffffff
Please enter command: (All Data in HEX no matter 0x is added or not)
:

	type ‘step N’ to run N instructions

: step 10
pc = 0x80000300
pc = 0x80000304
pc = 0x80000308
pc = 0x8000030c
pc = 0x80000310
pc = 0x80000314
pc = 0x80000318
pc = 0x8000031c
pc = 0x80000320
pc = 0x80000324
Please enter command: (All Data in HEX no matter 0x is added or not)
:

	re-check some var

: read 800102c4 dma
Do Read to Addr 0x800102c4, Got Data 0x6ffffffff
Please enter command: (All Data in HEX no matter 0x is added or not)
:

	continue to run until run into the breakpoint again

: c
Continue
Please enter command: (All Data in HEX no matter 0x is added or not)
:

	disable breakpoint

: d0
del hw breakpoint1
Please enter command: (All Data in HEX no matter 0x is added or not)
:

	continue

: c
Continue
Please enter command: (All Data in HEX no matter 0x is added or not)
:

ES1Y SDK v1.0 Introduction

ES1Y Software Development Kit is used in linux platform at present
and it will support much more host OS, e.g. windows later. The SDK
provides freertos APIs for customers’ application development,
what’s more, there are some system test demos included in the SDK
so as to help the new customers get on hand quickly.

1. Getting start

	In this chapter, we need prepare development environment and know how to make the binary running on ES1Y SoC, and then rvSDK provide straightforward tools for debugging.

	Init SDK

Follow the README.md file at SDK v1.0 root dir firstly.

	Compile & Run

	
	Build the gcc toolchain
	$ cd build
$ make gcc

	
	Build the fesvr & debug proxy
	$ make fesvr
$ make driver

	
	Build freertos and application code
	# clean if needed
$ make freertos-clean
$ make freertos

	
	Run vivado to use FPGA as a debug tool, at the same time, run debug proxy
	# this command only need execute once time in the whole debug process
$ make run-vivado # or shortly 'make rv'

	
	Download and run FreeRTOS firmware through debug proxy
	$ make run-rtos # or shortly 'make rvt'
when you finish your debug and want to exit
use Ctrl+C Ctrl+C(that is: input Ctrl+C twice).

	
	You can use this one command below instead of steps above to simplify build process
	$ make freertos-all

	
	One additional command is provided to speed up debuging after edit source code
	# this command equal to make freertos && make run-rtos
$ make re-comp-run-rtos # or shortly 'make rvrt'

	
	The default code in rvSDK v1.0 will startup two tasks, which one print ‘TEST’ per second and the other one print ‘DEMO’ every 2 seconds, after do some IO test:

Welcome enter FreeRTOS on pygmy_e platform

TEST DEMO for IO functions ...

TEST IO functions done ...
------- TEST -------

Demo task ...
------- Demo -------
------- TEST -------
------- TEST -------
------- Demo -------
------- TEST -------
------- TEST -------
------- Demo -------

	
	Debug
	
	
	Console by UART
	
	Please read the other document that introduces usb-uart dongle connection between host & target.

	The proper UART baudrate & other configuration is 500000, 8n1 for print debugging.

	
	Command Line Interface(CLI)
	
	
	There are some limitations for debugging CLI in rvSDK v1.0 with debug-spi-base.o, anyway, we will provide more abundant debugging tool in future.
	1. Debug tool startup interface

$ cd software/host/driver/pygmy_e
$./debug-socket.o
serverPort = 8800
Please enter command: (All Data in HEX no matter 0x is added or not)
:

2. read the current pc value

: if_pc
Do Read to Addr 0x100238 (if_pc), Got Data 0x8000943c
Please enter command: (All Data in HEX no matter 0x is added or not)
: wb_pc
Do Read to Addr 0x100258 (wb_pc), Got Data 0x80009430
Please enter command: (All Data in HEX no matter 0x is added or not)
:

3. read device register

: read 80bff8 rb
Do Read to Addr 0x80bff8, Got Data 0xbccb5ade85
Please enter command: (All Data in HEX no matter 0x is added or not)
:

4. read memory

: read 8000f798 dma
Do Read to Addr 0x8000f798, Got Data 0x20656e6f6420736e
Please enter command: (All Data in HEX no matter 0x is added or not)
:

	Reference debug-socket introduction for more debug commands introduction.

2. How to code

	In rvSDKv1/target/src/Demo/pymgy_e/, app_entry.c is main application entry c file, and you should implement rvHalCB_app_entry() within it depend on your requirement.

	By default, run demo program if enable #define APP_SYSTEM_TEST in app_entry.c, otherwise run your program.

	The demo code in this file which supports i2c, gpio and spi flash. (controlled by #define TEST_DEMO_GPIO #define TEST_DEMO_I2C #define TEST_DEMO_SPI_FLASH in target/src/Demo/pymgy_e/hal/config/pygmy_e/system_config.h)

	Anyway, you can implement rvHalCB_app_entry() by your own requirement

3. Programming API

	
	Freertos API
	
	we can easily get the help from https://www.freertos.org/FreeRTOS-quick-start-guide.html

ES1Y API

OS API

The official FreeRTOS API references can be found here: https://www.freertos.org/a00106.html

UART API

Only support module init and printf functions for now, more functions is under developing.

/********************************
 uart
*********************************/
/*!
 * @discussion initialize uart module.
*/
void __rvHal_uart_init(void);

/*!
 * @discussion print log through uart.
 * @param fmt fmt string.
 * @param ... params corresponding to % in fmt string.
* this is a simplified version printf of standard printf in libc,
* only support below format params:
* %d, %u, %ld, %lu, %lld, %llu, %o, %x, %lo, %lx, %llo, %llx, %s, %c, %%
* and also support width and padding in params above
 */
int printf(const char* fmt, ...);

GPIO API

GPIO API is in the following code snippet

/********************************
 gpio
*********************************/

struct irq_gpio_handler_t
{
 void *context;
 void (*hook)(void *context);
};

struct gpio_desc
{
 unsigned int pin;
 struct irq_gpio_handler_t handler;
};

enum RVHAL_gpio_type
{
 GPIO_PIN_INPUT = 0,
 GPIO_PIN_OUTPUT,
};

enum RVHAL_gpio_int_type
{
 GPIO_INT_TYPE_LEVEL = 0,
 GPIO_INT_TYPE_EDGE,
};

enum RVHAL_gpio_int_polarity
{
 GPIO_INT_POLARITY_LOW = 0,
 GPIO_INT_POLARITY_HIGH,
};

/*!
 * @discussion initialize gpio module.
*/
void __rvHal_gpio_init(void);

/*!
 * @discussion initialize gpio pin descriptior.
 * @param dgpio gpio descriptor.
 * @param pin pin number[0, 31].
 * @param type see enum RVHAL_gpio_type.
 * @param value if type is GPIO_PIN_OUTPUT, it is [0, 1] by default.
 */
void rvHal_gpio_init(struct gpio_desc *dgpio, unsigned int pin, unsigned int type, unsigned int value);

/*!
 * @discussion set gpio pin interrupt attribution.
 * @param dgpio gpio descriptor.
 * @param level see enum RVHAL_gpio_int_type.
 * @param polarity see enum RVHAL_gpio_int_polarity.
 * @param irqHandler gpio pin callback handler.
 * @param context context param for this gpio pin.
 */
void rvHal_gpio_set_interrupt(struct gpio_desc *dgpio, unsigned int level, unsigned int polarity, void (*irqHandler)(void*), void *context);

/*!
 * @discussion remove gpio pin interrupt attribution.
 * @param dgpio gpio descriptor.
 */
void rvHal_gpio_remove_interrupt(struct gpio_desc *dgpio);

/*!
 * @discussion gpio pin output level.
 * @param dgpio gpio descriptor.
 * @param value [0, 1].
 */
void rvHal_gpio_write(struct gpio_desc *dgpio, unsigned int value);

/*!
 * @discussion gpio pin input level.
 * @param dgpio gpio descriptor.
 * @return value [0, 1].
 */
unsigned int rvHal_gpio_read(struct gpio_desc *dgpio);

/*!
 * @discussion toggle gpio pin output level.
 * @param dgpio gpio descriptor.
 */
void rvHal_gpio_toggle(struct gpio_desc *dgpio);

V8-RISCV

Welcome to the v8-riscv wiki

This is an on-going project to enhance the RISC-V backend for the V8 JavaScript Engine. The initial port has been upstreamed (https://chromium.googlesource.com/v8/v8.git/). The RISC-V backend is fully functional and is able to run the full test suites as well has common benchmarks, but it still needs improvements for improving performance and adding features. We have established a sustainable porting methodology and development best practices, such that we feel confident to invite broader community participation. We welcome you to join our development effort. Plenty of support is still needed for a complete and high-performing V8 on RISC-V.

This repo will be the community home even though it is now available upstream. This provides us a shared space for developing larger changes here before pushing them upstream, as well as a stable branch that will always work for RISC-V, as upstream may still break the RISC-V port from time to time. For general V8 information, see V8 Dev [https://v8.dev/]. The rest of the wiki is specific to the RISC-V V8 backend.

RISC-V ISA specification is found here [https://riscv.org/specifications/], and RISC-V standard ABI can be found here [https://github.com/riscv/riscv-elf-psabi-doc/].

Getting Started

	Get the source

	Cross-compiled build (running on QEMU/HiFive)

	Simulator build (for developers running on x86)

	Run tests

	Build RPM packages

Project Management

	Project roadmap

	Testing status

	Work groups

	[[Upstream Workflow]]

For Developers

	Setup VSCode

	How to contribute

	How to debug V8

RISC-V Backend Design Doc

	Understand V8 backend architecture

	How to add a new instruction

	How to develop a new backend

Community operation

	Join our Slack [https://forms.office.com/Pages/ResponsePage.aspx?id=8o_uD7KjGECcdTodVZH-3OiciJKG_BJHrqMNgnsFFqtUNlRUNEQ5QUgxNk0wVEVaTjJBTDNOMDNIQS4u]

	Attend our bi-weekly developer Zoom Meeting [https://us02web.zoom.us/j/87641510603?pwd=d2NDcWZtdlJhdG5pQ2ZBZHl4Uk1Ndz09]

Meeting Info	Description
Next meeting	17/03/2021 (US)
Time	every other Wednesdays 5pm PT (Thursdays 9am Beijing Time)
Meeting ID	876 4151 0603
Passcode	714793
Meeting agenda	Meeting agenda (03/03)
Last meeting minutes	Meeting minutes (03/03)

	Content sharing

Index

 Use this page to organize content shared at our sync-up meetings. These items area also linked from the meeting minutes page, but provided here as a quick way to find and access useful materials.

	V8 Debugging Tips [https://github.com/riscv/v8/wiki/media/Debugging.pptx]

	Node.js / NPM Demo [https://github.com/riscv/v8/wiki/media/node-npm.m4v]

	Performance analysis between riscv64 and mips64 [https://github.com/riscv/v8/wiki/media/Performance-analysis-between-riscv64-and-mips64.pdf]

	Register Allocator in V8 [https://github.com/riscv/v8/wiki/media/Register-Allocator-in-V8.pdf]

	C Extension Implementation Proposal [https://github.com/riscv/v8/wiki/media/C-extension-imp.pptx]

 As we hope to eventually get this code upstreamed, we will generally follow all policies from the official v8 project [https://v8.dev/docs/contribute].

Issues

In general, all changes should be based on an issue [https://github.com/riscv/v8/issues]. If you would like to work on an existing issue, first check if anyone is already assigned and if so, discuss with that person before beginning work. If you would like to work on a new problem or enhancement, first create an issue for it and discuss with the community. The best way to do this will be to join us in Slack [https://forms.office.com/Pages/ResponsePage.aspx?id=8o_uD7KjGECcdTodVZH-3OiciJKG_BJHrqMNgnsFFqtUNlRUNEQ5QUgxNk0wVEVaTjJBTDNOMDNIQS4u].

When creating a new issue, please be descriptive and include all relevant details, enough that someone completely unfamiliar with the problem or proposal can understand. Be sure to label your issue with the appropriate category (bug, enhancement, documentation, etc.). If you plan to work on the issue yourself, feel free to self-assign, otherwise, you can leave it unassigned for someone else to pick up.

If you plan to begin work on an issue, first verify that it is not already assigned to someone else. If it is already assigned, but you have some special reason to work on this issue, be sure to communicate with the assigned person. If it is unassigned, assign it to yourself before beginning work so that others know you are working on it. Use the issues comments to update your status regularly and communicate any important information to the community.

Submitting your Changes

This project uses the standard GitHub mechanism for pull requests. See “GitHub: Contributing to a Project” [https://git-scm.com/book/en/v2/GitHub-Contributing-to-a-Project] for the basic information on how to fork the repository, create a pull request, etc.

As mentioned above, we will follow the guidelines [https://v8.dev/docs/contribute] for the upstream v8 project. The relevant part for submitting code is:

The source code of V8 follows the Google C++ Style Guide so you should familiarize yourself with those guidelines. Before submitting code you must pass all our tests, and have to successfully run the presubmit checks:

git cl presubmit

The presubmit script uses a linter from Google, cpplint.py. It is part of depot_tools, and it must be in your PATH — so if you have depot_tools in your PATH, everything should just work.

Our CI job will run tests as well. These tests must all pass in order for your pull request to be considered. The CI job runs the following script to test a build.

v8-riscv-tools/test-riscv.sh

Please firstly get the v8-riscv-tools repo from https://github.com/v8-riscv/v8-riscv-tools.git, then run this same suite of tests locally before opening your PR to avoid wasting any one’s time.

All pull requests must be reviewed and approved by at least one owner before being accepted. Please also review “Using Git” and ensure that your commit messages follow the guidelines laid out there.

In the case of irregular timeouts or other strange behavior from the CI server, authorized users may re-run the CI testing by adding a special slash-command as a comment to the PR:

	/retest-precheck: Re-run the pre-check

	/retest-build: Re-run the build

	/retest-run: Re-run the testsuite

	/retest: Re-run the whole CI job (all of the above)

Contributing to the Documentation

The wiki is editable by all team members. Others may open issues against documentation, in the same way you would do for issues with the code. It seems that GitHub does not support PRs for the wiki, but we welcome contributors to add your changes into an issue for the team to review.

 This page describes how to build V8 for execution on RISC-V hardware or RISC-V QEMU. It is assumed that you have already followed the steps to get the source.

	RISC-V Toolchain

	Install Prerequisites

	Build Toolchain

	V8 Build

	Install prerequisites

	Configure toolprefix

	Cross-compile v8 as RISC-V binary on an x86-64 Host

	Configure with GN

	Build with Ninja

	Run on QEMU

	Download QEMU

	Install Prerequisites

	Build QEMU for riscv64

	Download Fedora and U-Boot Images

	Run QEMU

	Copy V8 to QEMU

	Run V8 on QEMU

	Script for Developers in China

Table of contents generated with markdown-toc

RISC-V Toolchain

Install Prerequisites

sudo apt install gawk texinfo zlib1g-dev

Build Toolchain

Follow the steps below to install the RISC-V toolchain. There is nothing modified in the standard toolchain, so if you already have this installed, you can skip this step.

$ git clone https://github.com/riscv/riscv-gnu-toolchain
$ cd riscv-gnu-toolchain
$ git submodule update --init --recursive

./configure --prefix=/opt/riscv
sudo make linux -j8

Note -j8 specifies parallel build with 8 processes, and should be adjusted to the number of cores on your machines.

Be sure to add the path to this new toolchain to your path:

export PATH="/opt/riscv/bin:$PATH"

V8 Build

Install prerequisites

The following script will use apt to install any packages required for building v8. You will need sudo access to install the packages.

cd $V8_ROOT/v8
./build/install-build-deps.sh

Configure toolprefix

Make sure you have followed the Patch the Chromium Toolchain step [https://github.com/riscv/v8/wiki/Get-the-Source#patch-the-chromium-build-toolchain] on the Get the Source [https://github.com/riscv/v8/wiki/Get-the-Source] page.

Before build it , we need apply a The patch [https://github.com/riscv/v8/blob/riscv-porting-dev/patches/build.patch].
The patch [https://github.com/riscv/v8/blob/riscv-porting-dev/patches/build.patch] defines riscv64 toolchain configurations in $V8_ROOT/v8/build/toolchain/linux/BUILD.gn. By default, the toolprefix of gcc_toolchain("riscv64") is set to riscv64-linux-gnu-. If your system uses a different RISC-V toolchain prefix, the setting for toolprefix needs to be manually updated. For instance, if your RISCV toolchain has the prefix of riscv64-unknown-linux-gnu, then make the following changes to $V8_ROOT/v8/build/toolchain/linux/BUILD.gn

gcc_toolchain("riscv64") {
 toolprefix = "riscv64-unknown-linux-gnu"
 ...

Cross-compile v8 as RISC-V binary on an x86-64 Host

Configure with GN

The following commands build an riscv64 executable for v8 . We use gn to configure the debug build as such:

gn gen out/riscv64.native.debug --args='is_component_build=false is_debug=true target_cpu="riscv64" v8_target_cpu="riscv64" use_goma=false goma_dir="None" treat_warnings_as_errors=false'

If the binary is too large. You can add symbol_level = 1 or symbol_level = 0 to ./out/riscv64.native.debug/arg.gn. If symbol_level is 0, it means there is no debug-symbol in binary. Default value is 2.

Build with Ninja

ninja -C out/riscv64.native.debug -j8

Note, -j8 specifies to use 8 cores for the build and should be adjusted for your build machine.

Run on QEMU

Download QEMU

Clone QEMU:

cd $V8_ROOT/
git clone git@github.com:qemu/qemu.git
cd $V8_ROOT/qemu
git checkout v5.0.0

Install Prerequisites

sudo apt-get install libglib2.0-dev libpixman-1-dev

Build QEMU for riscv64

./configure --target-list=riscv64-softmmu && make -j 4
sudo make install # Optional

Download Fedora and U-Boot Images

From https://dl.fedoraproject.org/pub/alt/risc-v/repo/virt-builder-images/images/, download Fedora-Developer-Rawhide-*.raw.xz as well as the matching Fedora-Developer-Rawhide-*-fw_payload-uboot-qemu-virt-smode.elf:

wget https://dl.fedoraproject.org/pub/alt/risc-v/repo/virt-builder-images/images/Fedora-Developer-Rawhide-20191123.n.0-sda.raw.xz

unxz -k Fedora-Developer-Rawhide-20191123.n.0-sda.raw.xz

wget https://dl.fedoraproject.org/pub/alt/risc-v/repo/virt-builder-images/images/Fedora-Developer-Rawhide-20191123.n.0-fw_payload-uboot-qemu-virt-smode.elf

Run QEMU

In the command below, VER is the version number from the files you downloaded above, for example, 20191123.n.0.

Let FEDORA_IMAGE_DIR be the directory that contains Fedora-Developer-Rawhide-20191123.n.0-fw_payload-uboot-qemu-virt-smode.elf and
Fedora-Developer-Rawhide-20191123.n.0-sda.raw (downloaded by following the previous step).

cd <FEDORA_IMAGE_DIR>
export VER=20191123.n.0
qemu-system-riscv64 \
 -nographic \
 -machine virt \
 -smp 4 \
 -m 2G \
 -kernel Fedora-Developer-Rawhide-${VER}-fw_payload-uboot-qemu-virt-smode.elf \
 -object rng-random,filename=/dev/urandom,id=rng0 \
 -device virtio-rng-device,rng=rng0 \
 -device virtio-blk-device,drive=hd0 \
 -drive file=Fedora-Developer-Rawhide-${VER}-sda.raw,format=raw,id=hd0 \
 -device virtio-net-device,netdev=usernet \
 -netdev user,id=usernet,hostfwd=tcp::3333-:22

Once qemu is brought up, you will see the following prompt:

Welcome to the Fedora/RISC-V disk image
https://fedoraproject.org/wiki/Architectures/RISC-V

Build date: Sat Nov 23 12:47:19 UTC 2019

Kernel 5.4.0-0.rc7.git0.1.1.riscv64.fc32.riscv64 on an riscv64 (ttyS0)

The root password is 'fedora_rocks!'.
root password logins are disabled in SSH starting Fedora 31.
User 'riscv' with password 'fedora_rocks!' in 'wheel' group is provided.

To install new packages use 'dnf install ...'

To upgrade disk image use 'dnf upgrade --best'

If DNS isn’t working, try editing ‘/etc/yum.repos.d/fedora-riscv.repo’.

For updates and latest information read:
https://fedoraproject.org/wiki/Architectures/RISC-V

Fedora/RISC-V

Koji: http://fedora.riscv.rocks/koji/
SCM: http://fedora.riscv.rocks:3000/
Distribution rep.: http://fedora.riscv.rocks/repos-dist/
Koji internal rep.: http://fedora.riscv.rocks/repos/
fedora-riscv login:

The default root password for this image is fedora_rocks!.

Copy V8 to QEMU

Inside the QEMU console, you’ll need to enable root login over ssh with password. Add the following line to /etc/ssh/sshd_config:

PermitRootLogin=yes

Then restart the ssh server:

[root@fedora-riscv ~]# systemctl restart sshd.service

Now, you can use scp from a regular terminal on the same machine (not the qemu terminal) to copy files to the emulated machine. Note that the SSH port of the machine is mapped to 3333.

[joesmith@your-local-terminal] scp -P 3333 $V8_ROOT/v8/out/riscv64.native.debug/d8 $V8_ROOT/v8/out/riscv64.native.debug/snapshot_blob.bin root@localhost:~/.

To log into your QEMU instance from another terminal on the same server, ssh -p 3333 root@localhost.

Run V8 on QEMU

Now, you are ready to run d8 inside the qemu console:

[root@fedora-riscv ~]# cat hello.js
console.log("hello, world!");
[root@fedora-riscv ~]# ./d8 hello.js
hello, world!

For more info about Fedora on RISC-V, please visit https://fedoraproject.org/wiki/Architectures/RISC-V/Installing

Script for Developers in China

For developers within China, the PLCT lab provides a script to retrieve and run fedora-riscv64 from a local mirror: deploy_riscv64fedora_qemu.sh [https://github.com/isrc-cas/PLCT-Toolbox/blob/master/deploy_riscv64fedora_qemu.sh].

Run this script:

./deploy_riscv64fedora_qemu.sh

 Date: 3/3/2021 5pm PT

Agenda

	Announcements

	Community updates

	Discuss develop progressing after upstreaming

Zoom link [https://us02web.zoom.us/j/87641510603?pwd=d2NDcWZtdlJhdG5pQ2ZBZHl4Uk1Ndz09]

Previous Meeting Minutes

 The V8 project uses Google’s depot_tools [https://commondatastorage.googleapis.com/chrome-infra-docs/flat/depot_tools/docs/html/depot_tools_tutorial.html#_setting_up] to manage the source code. For this fork, we will first follow the instructions from v8 [https://v8.dev/docs/source-code] and use these tools to retrieve all of the required sources from the core project. Then we will use git directly to retrieve the branch with the RISC-V port.

	Installing depot_tools

	Checkout V8 Source from Google

	Checkout the RISC-V Branch

	Retrieve the matching dependencies

Table of contents generated with markdown-toc

Installing depot_tools

Clone the depot_tools repository to your system:

git clone https://chromium.googlesource.com/chromium/tools/depot_tools.git
export PATH=$PATH:/path/to/depot_tools

You may also want to add export PATH=$PATH:/path/to/depot_tools into your shell configuration file (ex. ~/.bashrc) to ensure that this directory is always in your path.

Now, check that depot_tools is correctly installed:

gclient

If this shows the usage information, then your installation is successful.

Checkout V8 Source from Google

Assuming V8_ROOT is defined to some root directory for your v8 work:

mkdir $V8_ROOT
cd $V8_ROOT
fetch v8

You can now browse the original v8 code under $V8_ROOT/v8.

Checkout the RISC-V Branch

Since the RISC-V port is not yet upstream, we need to pull it from this repository.

cd $V8_ROOT/v8
git remote add riscv https://github.com/riscv/v8.git
or alternatively using ssh
git remote add riscv git@github.com:riscv/v8.git
git fetch riscv
git checkout riscv64

Retrieve the matching dependencies

The gclient tool will retrieve the dependencies that match to this particular branch.

cd $V8_ROOT/v8
gclient sync --with_branch_heads --with_tags

Next, continue to Simulator Build or Cross-compiled Build

 For an evolving ISA like RISC-V, it is common that we will have support for new instructions or new ISA extensions to the backend. In this post, we explain the steps to add a new instruction to an existing backend. In this case, we use the riscv64 backend as an example, but the process is similar to other backends as well.

	1. Add constants (src/codegen/riscv64/constants-riscv64.h)

	2. Add to the assembler (src/codegen/riscv64/assembler-riscv64.h/cc)

	3. Add to the simulator (src/codegen/riscv64/simulator-riscv64.h/cc)

	4. Test the instruction

	5. Add to the disassembler (src/diagnostics/riscv64/disasm-riscv64.h/cc)

	6. Test disassembler

	7. Use the new instruction

Table of contents generated with markdown-toc

1. Add constants (src/codegen/riscv64/constants-riscv64.h)

constants-riscv64.h defines constants that are related to instruction classes and encodings that are shared by the Assembler, Disasm, and Simulator. You will need to add new opcode to enum Opcode_t and other constants if it uses a new instruction format. Sometimes, a new instruction uses a new class of registers. Then one needs to add new register classes to register-riscv64.h.

2. Add to the assembler (src/codegen/riscv64/assembler-riscv64.h/cc)

Add a new Assembler API to assembler-riscv64.cc and assembler-riscv64.h as the generator for the new instruction. These Assembler APIs are typically named after the instruction name unless there is a naming conflict, such as and is named as and_.

// assembler-riscv64.h
void add(Register rd, Register rs1, Register rs2);

// assembler-riscv64.cc
void Assembler::add(Register rd, Register rs1, Register rs2) {
 GenInstrALU_rr(0b0000000, 0b000, rd, rs1, rs2);
}

If the instruction uses a new instruction format, one needs to add a new generator function for this new instruction format (e.g., GenInstrALU_rr).

3. Add to the simulator (src/codegen/riscv64/simulator-riscv64.h/cc)

Implement the behavior of the instruction in the simulator as shown blow:

void Simulator::DecodeRVRType() {
 switch (instr_.InstructionBits() & kRTypeMask) {
 case RO_ADD: {
 set_rd(sext_xlen(rs1() + rs2()));
 break;
 }

Note that constants like kRTypeMask is defined in constants-riscv64.h and is shared by both Assembler, Simulator, and Disasm.

4. Test the instruction

Once an instruction is added to the Assembler and the Simulator, it can be tested under the simulator build run. The new instruction needs to be added test/cctest/test-assembler-riscv64.cc

UTEST_R2_FORM_WITH_OP(add, int64_t, LARGE_INT_EXCEED_32_BIT, MIN_VAL_IMM12, +)

which is a macro that specifies two input operands to add and compare it against the expected result computing by + the two operands.

5. Add to the disassembler (src/diagnostics/riscv64/disasm-riscv64.h/cc)

Add the disassembler for the new instruction, as shown below:

void Decoder::DecodeRType(Instruction* instr) {
 switch (instr->InstructionBits() & kRTypeMask) {
 case RO_ADD:
 Format(instr, "add 'rd, 'rs1, 'rs2");
 break;

6. Test disassembler

Add a test for disassembly the new instruction in test/cctest/test-disam-riscv64.cc as shown below:

 COMPARE(add(s6, t0, t4), "01d28b33 add s6, t0, t4");

7. Use the new instruction

Simply adding a new instruction to the Assembler does not mean that the instruction is generated during code-gen. You have to use these “assembler” APIs in the code-gen routines such as in TurboAssembler (src/codegen/riscv64/macro-assembler-riscv64.cc), in ASM built-in functions (src/builtins/riscv64/builtins-riscv64.cc), during the lowering from TF machine-node IR to target-specific codes (src/compiler/backend/riscv64/code-generator-riscv64.cc), in the lowering from WASM IR to target-specific codes in the liftoff-compiler (src/wasm/riscv64/liftoff-assembler-riscv64.h), in regexp assembler (src/regexp/riscv64/regexp-assembler-riscv64.cc).

Sometimes a sequence of TF machine-node IRs may be represented by the new instruction being added. In this case, you need to introduce a new architecture-specific machine-node IR and add the new instruction to the instruction selector (src/compiler/backend/riscv64/instruction-selector-riscv64.cc), and a test case for the instruction selection (test/unittests/riscv64/instruction-selection-riscv64-unittest.cc).

 Table of Content

	Overall strategy

	Build options for debugging

	Useful flags for debugging

	Debug under simulated run

	Use simulator trace (--trace-sim)

	Use simulator debugger (--stop-at-sim)

	Generate debugging code in generated codes

	Flags summary

	Connect simulated trace to generated code

	Use print-all-code

	Use code comments

	Trace Analyzer

	Dump TF compiler IR via Turbolizer

	Generate TF sea-of-nodes

	Setup turbolizer

	JS-level debugging

	Use %OptimizeFunctionOnNextCall to force JIT

	DebugPrint

	Performance debugging

	countInstr.py tool

Table of contents generated with markdown-toc

Overall strategy

	Simplify the test cases

	Identify the ground truth

	Find the lead

	Map execution trace back to V8 source code

Build options for debugging

When running d8 or cctest in gdb, it will be useful to add the flag v8_optimized_debug = false to the GN arguments and rebuild. Without this, the code is optimized by default and will be difficult to debug.

Useful flags for debugging

	--single-threaded: disable background threads

	--jitless: disable JIT code generation

Debug under simulated run

Use simulator trace (--trace-sim)

V8’s simulated build is not only convenient for developing the backend for a new ISA on a host machine, but also helpful for debugging target binary on the host machine. The latter is enabled by --trace-sim, which dumps out all instructions executed using V8’s built-in simulator as well as the register states.

cctest test-bytecode-generator/StaticClassFields --trace-sim > trace.log

A typical trace looks like the following. The number in () (e.g., (49)) indicates the instruction count. And the hex number before the instruction count is the value in the target register (e.g., s3 in this instruction) in hex. And the type:value pair following the instruction count is the value of target register in decimal (for integer types) or floating-point (for float).

 0x55b90866a9e0 00200993 li s3, 2 0000000000000002 (49) int64:2 uint64:2
 0x55b90866a9e4 00000463 beq zero_reg, zero_reg, 8
 0x55b90866a9ec ff810113 addi sp, sp, -8 00007fe83b181ee0 (51) int64:140635400576736 uint64:140635400576736
 0x55b90866a9f0 01313023 sd s3, 0(sp) (52) int64:2 uint64:2 --> [addr: 7fe83b181ee0]
 0x55b90866a9f4 01c0006f j 28 0000000000000000 (53) int64:0 uint64:0
 0x55b90866aa10 00000e13 mv t3, zero_reg 0000000000000000 (54) int64:0 uint64:0

Use simulator debugger (--stop-at-sim)

The simulator embedded in V8 has a built-in debugger. The debugger can be invoked by --stop-sim-at <n>. For instance, the following command will enter the simulator mode after executing 100 RISCV instructions in the simulator (as shown by the sim> prompt).

cctest test-bytecode-generator/StaticClassFields --stop-sim-at 100
 0x000055937ba80000 009784b3 add s1, a5, s1
sim> disasm
 0x55937ba80000 009784b3 add s1, a5, s1
 0x55937ba80004 00000c63 beq zero_reg, zero_reg, 24
 0x55937ba80008 0007b903 ld s2, 0(a5)
 0x55937ba8000c 00878793 addi a5, a5, 8
 0x55937ba80010 00093903 ld s2, 0(s2)
 0x55937ba80014 ff810113 addi sp, sp, -8
 0x55937ba80018 01213023 sd s2, 0(sp)
 0x55937ba8001c fe9796e3 bne a5, s1, -20
 0x55937ba80020 fa0b3703 ld a4, -96(s6)
 0x55937ba80024 00070793 mv a5, a4

One can type help under the prompt to get a list of commands supported by the debugger:

sim> help
cont (alias 'c')
 Continue execution
stepi (alias 'si')
 Step one instruction
print (alias 'p')
 print <register>
 Print register content
 Use register name 'all' to print all GPRs
 Use register name 'allf' to print all GPRs and FPRs
printobject (alias 'po')
 printobject <register>
 Print an object from a register
stack
 stack [<words>]
 Dump stack content, default dump 10 words)
mem
 mem <address> [<words>]
 Dump memory content, default dump 10 words)
flags
 print flags
disasm (alias 'di')
 disasm [<instructions>]
 disasm [<address/register>] (e.g., disasm pc)
 disasm [[<address/register>] <instructions>]
 Disassemble code, default is 10 instructions
 from pc
gdb
 Return to gdb if the simulator was started with gdb
break (alias 'b')
 break : list all breakpoints
 break <address> : set / enable / disable a breakpoint.
tbreak
 tbreak : list all breakpoints
 tbreak <address> : set / enable / disable a temporary breakpoint.
 Set a breakpoint enabled only for one stop.

To make better use of the debugging commands, let me add more explanations.

break/tbreak

There is no number limit of break points in riscv64 simulator just like the arm64 simulator.

gdb

To make gdb command work well, you should assure that you start the simulator with gdb.

Generate debugging code in generated codes

Sometimes we want to see if an execution follows a particular code path. For instance, in the following example, a Trap instruction is inserted to the code path following the label stack_overflow. If the execution does reach this path, it will enter the simulator debugger (i.e., entering prompt sim>).

 __ bind(&stack_overflow);
 __ Trap(); // trap if execution reaches here
 // Restore the context from the frame.
 __ Ld(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));
 __ CallRuntime(Runtime::kThrowStackOverflow);

Other debugging APIs from TurboAssembler are:

void TurboAssembler::Trap();
void TurboAssembler::Assert(Condition cc, AbortReason reason, Register rs, Operand rt);
void TurboAssembler::Check(Condition cc, AbortReason reason, Register rs, Operand rt);
void TurboAssembler::Abort(AbortReason reason);

In addition to TurboAssembler APIs, here are more lower-level instructions:

void Assembler::stop(uint32_t code = kMaxStopCode);
void Assembler::break_(uint32_t code, bool break_as_stop = false);

The meaning of parameter code is at constants-riscv64.h:169.

// On RISC-V Simulator breakpoints can have different codes:
// - Breaks between 0 and kMaxWatchpointCode are treated as simple watchpoints,
// the simulator will run through them and print the registers.
// - Breaks between kMaxWatchpointCode and kMaxStopCode are treated as stop()
// instructions (see Assembler::stop()).
// - Breaks larger than kMaxStopCode are simple breaks, dropping you into the
// debugger.

Let’s see two examples to get how to use these instructions.

Source code

Source code looks like test.js example in v8 dev [https://v8.dev/docs/debug-arm]

// Our optimized function.
function add(a, b) {
 return a + b;
}

// Typical cheat code enabled by --allow-natives-syntax.
//%PrepareFunctionForOptimization(add);

// Give the optimizing compiler type feedback so it'll speculate `a` and `b` are
// numbers.
res = add(1, 3);
console.log(res);

// And force it to optimize.
%OptimizeFunctionOnNextCall(add);
res = add(5, 7);
console.log(res);

Stop point

Let’s insert a stop point before instruction fmv.d.x in macro-assembler-riscv64.cc:LoadFPRImmediate

void TurboAssembler::LoadFPRImmediate(FPURegister dst, uint64_t src) {
 // Handle special values first.
 if (src == bit_cast<uint64_t>(0.0) && has_double_zero_reg_set_) {
 if (dst != kDoubleRegZero) fmv_d(dst, kDoubleRegZero);
 } else if (src == bit_cast<uint64_t>(-0.0) && has_double_zero_reg_set_) {
 Neg_d(dst, kDoubleRegZero);
 } else {
 if (dst == kDoubleRegZero) {
 DCHECK(src == bit_cast<uint64_t>(0.0));
 stop(127); // Here it is <------------------
 fmv_d_x(dst, zero_reg);
 has_double_zero_reg_set_ = true;
 has_single_zero_reg_set_ = false;
 } else {
 UseScratchRegisterScope temps(this);
 Register scratch = temps.Acquire();
 li(scratch, Operand(src));
 fmv_d_x(dst, scratch);
 }
 }
}

It will enter the simulator debugger when ebreak and the followed lui are executed, which are emited by void Assembler::break_(uint32_t code, bool break_as_stop = false);

$ out/riscv64.sim/d8 --allow-natives-syntax --stop_sim_at 1 ../test.js
 0x0000563adbd2a660 f9810113 addi sp, sp, -104
sim> break 0x0000563adbd2a6c0
Set a breakpoint at 0x563adbd2a6c0
sim> c
Hit a breakpoint at 0x563adbd2a6c0.
 0x0000563adbd2a6c0 01213827 fsd fs2, 16(sp)
sim> di
 0x563adbd2a6c0 01213827 fsd fs2, 16(sp)
 0x563adbd2a6c4 00913427 fsd fs1, 8(sp)
 0x563adbd2a6c8 00813027 fsd fs0, 0(sp)
 0x563adbd2a6cc 00100073 ebreak
 0x563adbd2a6d0 0007f037 lui zero_reg, 0x7f
 0x563adbd2a6d4 f2000cd3 fmv.d.x fs9, zero_reg
 0x563adbd2a6d8 00050b13 mv s6, a0
 0x563adbd2a6dc fff00493 li s1, -1
 0x563adbd2a6e0 00200913 li s2, 2
 0x563adbd2a6e4 00200993 li s3, 2
sim> c
Simulator hit stop (127)
 0x0000563adbd2a6d4 f2000cd3 fmv.d.x fs9, zero_reg
sim> stop info all
Stop information:
stop 127 - 0x7f : Enabled, counter = 1
sim> c
4
12

Watch point

Insert a watch point(0 <= code <= kMaxWatchpointCode) in the same place as the previous example.

void TurboAssembler::LoadFPRImmediate(FPURegister dst, uint64_t src) {
 // Handle special values first.
 if (src == bit_cast<uint64_t>(0.0) && has_double_zero_reg_set_) {
 if (dst != kDoubleRegZero) fmv_d(dst, kDoubleRegZero);
 } else if (src == bit_cast<uint64_t>(-0.0) && has_double_zero_reg_set_) {
 Neg_d(dst, kDoubleRegZero);
 } else {
 if (dst == kDoubleRegZero) {
 DCHECK(src == bit_cast<uint64_t>(0.0));
 break_(31, false); // Here it is <------------------
 fmv_d_x(dst, zero_reg);
 has_double_zero_reg_set_ = true;
 has_single_zero_reg_set_ = false;
 } else {
 UseScratchRegisterScope temps(this);
 Register scratch = temps.Acquire();
 li(scratch, Operand(src));
 fmv_d_x(dst, scratch);
 }
 }
}

The simulator ran through watchpoint 31 and printed the registers, and it would not enter the simulator debugger.

$ out/riscv64.sim/d8 --allow-natives-syntax --stop_sim_at 25 ../test.js
 0x0000563dd31546c0 01213827 fsd fs2, 16(sp)
sim> di
 0x563dd31546c0 01213827 fsd fs2, 16(sp)
 0x563dd31546c4 00913427 fsd fs1, 8(sp)
 0x563dd31546c8 00813027 fsd fs0, 0(sp)
 0x563dd31546cc 00100073 ebreak
 0x563dd31546d0 0001f037 lui zero_reg, 0x1f
 0x563dd31546d4 f2000cd3 fmv.d.x fs9, zero_reg
 0x563dd31546d8 00050b13 mv s6, a0
 0x563dd31546dc fff00493 li s1, -1
 0x563dd31546e0 00200913 li s2, 2
 0x563dd31546e4 00200993 li s3, 2
sim> c

---- watchpoint 31 marker: 1 (instr count: 28) --
 ra: 0xfffffffffffffffe -2 sp: 0x00007fd2e9bf9ef8 140543841509112 gp: 0x0000000000000000 0
 tp: 0x0000000000000000 0 fp: 0x0000000000000000 0 pc: 0x0000563dd31546d4 94823534380756
 a0: 0x0000563dd5bbc7d0 94823578847184 a1: 0x000000080f640471 34617951345
 a2: 0x0000002e1665f109 197944275209 a3: 0x00000084eb5c15c1 570884363713
 a4: 0x0000000000000000 0 a5: 0x0000000000000000 0
 a6: 0x0000000000000000 0 a7: 0x0000000000000000 0
 s1: 0x0000000000000000 0 s2: 0x0000000000000000 0
 s3: 0x0000000000000000 0 s4: 0x0000000000000000 0
 s5: 0x0000000000000000 0 s6: 0x0000000000000000 0
 s7: 0x0000000000000000 0 s8: 0x0000000000000000 0
 s9: 0x0000000000000000 0 s10: 0x0000000000000000 0
s11: 0x0000000000000000 0
 t0: 0x0000000000000000 0 t1: 0x0000000000000000 0
 t2: 0x0000000000000000 0 t3: 0x0000000000000000 0
 t4: 0x0000000000000000 0 t5: 0x0000000000000000 0
 t6: 0x0000000000000000 0
4
12

Flags summary

d8 flags needed:

	--trace-sim: print out disasm of instructions and content of target register after each simulated instruction

	--debug-riscv: Print instructions as they are emitted; print other debug info from assemblers

	--stop-sim-at <n>: enter debugger embedded inside the simulator after <n> instructions

Connect simulated trace to generated code

Use print-all-code

This is a very useful flag when debugging built-in functions. It dumps all codes generated by the compiler including built-in functions and user-level codes. Since there are a couple of thousands of built-in functions, it is recommended to redirect output to a file when using the flag (otherwise your VSCode remote window may freeze over too much stdout output).

cctest test-bytecode-generator/StaticClassFields --print-all-code > t.all-code

Here are some useful flags for tracing V8 internals (complete flags use d8 --help):

	--print-bytecode: print Ignition interpreter bytecode

	--print-code and --code-comments: printout generated final code (w/ additional comments)

	--print-all-code: will printout all generated codes (incl. builtins) w/ all verbose options, a lot of output so better redirect to a file

	--use-verbose-printer (combined w/ print-code, print-builtin-code): print out

	--print-wasm-code, --print-wasm-stub-code, --code-coments: printout wasm code generated and wasm native code gen

	--print-builtin-code and --print-builtin-size: print out disasm of generated builtin functions or their instruction sizes

Use code comments

Code comments may be useful to identify the locations where specific assembly code came from. When code comments are enabled, comments inserted at the high level will translate into comments in the output with --print-all-code. For example, if I want to see the code coming from CollectionsBuiltinsAssembler::SameValueZeroHeapNumber (builtins-collections-gen.cc), I may insert the Comment shown below at the beginning of the functions definition:

void CollectionsBuiltinsAssembler::SameValueZeroHeapNumber(
 TNode<Float64T> key_float, TNode<Object> candidate_key, Label* if_same,
 Label* if_not_same) {
 Comment("SameValueZeroHeapNumber");
 Label if_smi(this), if_keyisnan(this);

 GotoIf(TaggedIsSmi(candidate_key), &if_smi);
 GotoIfNot(IsHeapNumber(CAST(candidate_key)), if_not_same);
 ...
}

The code comments will not appear unless the appropriate flag is used. For code compiled at run-time, use the flag --code-comments. For code that is pre-compiled in the snapshot, add the following flag to your build configuration (in args.gn), then rebuild.

 v8_enable_snapshot_code_comments = true

Now, when I run my test with --print-all-code, I can search for “SameValueZeroHeapNumber” to identify the PC where this line was generated:

 0x563e95e60628 4188 0005169b slliw a3, a0, 0
 0x563e95e6062c 418c 0006d69b srliw a3, a3, 0
 SameValueZeroHeapNumber
 0x563e95e60630 4190 fad43423 sd a3, -88(fp)
 0x563e95e60634 4194 0016f993 andi s3, a3, 0x1

These PCs can then be mapped to the output from --trace-sim, to track the code and identify the bug.

Trace Analyzer

We have developed a tool to help analyze a simulator trace. It is available in the repository at tools/riscv/analyze.py [https://github.com/swlab/swe/v8/blob/riscv-porting-dev/tools/riscv/analyze.py]. It is designed to read the output of a simulation run with the flags --print-all-code and --trace-sim. Write this output to a file, as in this example:

$./cctest --print-all-code -trace-sim test-interpreter-intrinsics/Call &> out

The tool takes that file as input and uses it to generate a call tree:

$../../tools/riscv/analyze.py out
Start in JSEntry
Call JSEntryTrampoline 70
sp=0x7fd46befbed0 fp=0x7fd46befbf00
Args: 0x55b749fba710 0x2e3f480471 0x6789a9c129 0x2269200121 0x0 0x0 ? ?
Jump to JSEntryTrampoline 79
sp=0x7fd46befbed0 fp=0x7fd46befbf00
Args: 0x55b749fba710 0x2e3f480471 0x6789a9c129 0x2269200121 0x0 0x0 ? ?
Call Call_ReceiverIsAny 116
sp=0x7fd46befbea8 fp=0x7fd46befbec0
Args: 0x0 0x6789a9c129 0x6789a9c129 0x2e3f480471 0x2e3f480471 0x2e3f480471 ? ?
Jump to Call_ReceiverIsAny 125
sp=0x7fd46befbea8 fp=0x7fd46befbec0
Args: 0x0 0x6789a9c129 0x6789a9c129 0x2e3f480471 0x2e3f480471 0x2e3f480471 ? ?
Jump to CallFunction_ReceiverIsAny 137
sp=0x7fd46befbea8 fp=0x7fd46befbec0
Args: 0x0 0x6789a9c129 0x6789a9c129 0x2e3f480471 0x2e3f480471 0x2e3f480471 ? ?
Jump to CallFunction_ReceiverIsAny 146
...
Return from StackCheckHandler 1576
Returned: 0x2269203f81 0x50
Return from Call_ReceiverIsAny 1596
Returned: 0x2269203f81 0xab
WARNING: Expected stack pointer = 140550320668328, actual = 140550320668336
Return from JSEntryTrampoline 1600
Returned: 0x2269203f81 0xab
Return from JSEntry 1650
Returned: 0x2269203f81 0x0

As you can see in the example output above, the tool detects calls and jumps to functions and reports the name of the function called, then dumps the stack and frame pointers, and argument registers (a0-a7). a ? indicates that a value has not yet been seen for this register. Upon detecting a return, the comment is printed and the return value registers (a0 and a1) are printed. The following checks are also performed at a return:

	The return address should match the original return address from the call-site

	The stack pointer should be reset to the original stack pointer from the call-site

	The frame pointer should be reset to the original frame pointer from the call-site

You may use the -help flag to see the current list of available flags:

usage: analyze.py [-h] [--inline] [--target TARGET] [--print-host-calls]
 logfile

positional arguments:
 logfile

optional arguments:
 -h, --help show this help message and exit
 --inline Print comments inline with trace
 --target TARGET Specify the target architecture
 --print-host-calls Print info about calls to host functions

	--inline is useful to see the comments inline with the original lines of the simulator trace, to use the comments as a starting place to dig deeper.

	--target allows users to specify the target architecture, which is riscv by default, but also supports mips. This is useful for comparing the run of RISC-V against MIPS.

	--print-host-calls enables tracking calls/returns from host functions. These are ignored by default since we do not have information about the callee.

Dump TF compiler IR via Turbolizer

Turbolizer is a tool to visualize generated TF IR from --trace-turbo.

Generate TF sea-of-nodes

d8 flags needed:

	--trace-opt, --trace-turbo: trace Turbofan compiler, dump IR/code after each transformation into a generated .json or .cfg file

	--trace-turbo-path=xxx to dump the generated file to a specified directory

V8 (d8) can generate TF IRs to json files when --trace-turbo is specified. Each TF compiled function will produce one json file.

For instance, the following command will generate turbo-0x591b1bfd0-0.json which contains TF IR/nodes generated by different phases of TF compile:

> out.gn/riscv.gcc.simulated.debug/cctest test-run-jsops/BinopAdd --trace-turbo
Concurrent recompilation has been disabled for tracing.

Begin compiling method using TurboFan

Finished compiling method using TurboFan

To generate turbo-trace for built-in functions, --trace-turbo and --trace-turbo-path=xxx need to be specified ‘mksnapshot’ stage. One can specify a directory for these json files via --trace-turbo-path=xxx. For instance:

cd out.gn/riscv.build/
mkdir turbo-dump
./mksnapshot -turbo_instruction_scheduling --target_os=linux --target_arch=x64 --embedded_src gen/embedded.S --target_is_simulator --embedded_variant Default --random-seed 314159265 --native-code-counters --verify-heap --trace-turbo --trace-turbo-path=turbo-dump

NOTE: if you specify a trace-turbo-path, make sure the specified directory is created, otherwise the JSON files are not generated.

Setup turbolizer

Please follow the instructions here [https://lukeolney.me/posts/v8-turbolier/], but in a nutshell, it involves two steps

	Setup turbolizer

cd tools/turbolizer
npm I
npm run-script build

Note that I have to do an do-release-update on my server so that my node and npm met the version requirements of turbolizer

	Start turbolizer as an HTTP server

cd tools/turbolizer
python -m SimpleHTTPServer

	Access Turbolizer through your browser, e.g., http://10.124.206.247:8000/
This will bring up the web interface of the turbolizer. Use ‘Ctrl+L’ to load the json file from your local directory.

Note: since my V8 environment is on a remote server, the turbolizer is running on the server, but the json file needs to be loaded from my laptop to the browser, I have to scp the generated json file to my local machine, then load it to Turbolizer web interface

JS-level debugging

Use %OptimizeFunctionOnNextCall to force JIT

To trigger JIT compilation at the first invocation of a JS method insert %OptimizeFunctionOnNextCall(JSFuncName); to JS codes and invoke d8 with --allow-natives-syntax.

For example, the following code can be run w/ v8/out/x64.release/d8 simple.js --trace-opt --allow-natives-syntax –print-bytecode –print-code.

// simple.js
const INCREMENT = 1;
function incr(x) { return x + INCREMENT; }
%OptimizeFunctionOnNextCall(incr);
console.log(incr(5))

Here are some useful flags for tracing V8 internals:

	--jitless: disable JIT

DebugPrint

In the JavaScript code, we can insert calls to DebugPrint, which will dump various pieces of useful information about objects. To use it, we use a special syntax, prefixed with % to access this “native syntax”:

 var s = new Set([x]);
 %DebugPrint(s);

When we run the code, then we need to use the flag --allow-natives-syntax, and then we will see output like the following:

DebugPrint: 0x717ba952c1: [JSSet]
 - map: 0x00538e501441 <Map(HOLEY_ELEMENTS)> [FastProperties]
 - prototype: 0x00697d78ac99 <Object map = 0x538e501489>
 - elements: 0x007a63740b29 <FixedArray[0]> [HOLEY_ELEMENTS] - table: 0x00717ba952e1 <OrderedHashSet[13]>
 - properties: 0x007a63740b29 <FixedArray[0]> {}
0x538e501441: [Map]
 - type: JS_SET_TYPE
 - instance size: 32
 - inobject properties: 0
 - elements kind: HOLEY_ELEMENTS
 - unused property fields: 0
 - enum length: invalid
 - stable_map
 - back pointer: 0x007a63740471 <undefined>
 - prototype_validity cell: 0x0025fa080661 <Cell value= 1>
 - instance descriptors (own) #0: 0x007a63740229 <DescriptorArray[0]>
 - prototype: 0x00697d78ac99 <Object map = 0x538e501489>
 - constructor: 0x00697d78ab51 <JSFunction Set (sfi = 0x25fa08ffd1)>
 - dependent code: 0x007a63740289 <Other heap object (WEAK_FIXED_ARRAY_TYPE)>
 - construction counter: 0

Performance debugging

countInstr.py tool

First, clone the v8-riscv-tools repo from https://github.com/v8-riscv/v8-riscv-tools.git.

usage:

python3 ./v8-riscv-tools/CountInstr.py path_to_riscv_d8 path_to_mips_d8 [args of d8]

example:

python3 ./v8-riscv-tools/CountInstr.py ./out/riscv64.sim/d8 ./out/mips64el.debug/d8 test.js --test --enable-slow-check

 This wiki documents our monthly project milestones. Please refer to here for overall project roadmap and porting strategies.

	Milestones (Due 10/09/2020)

	Upstream to V8

	Performance Optimizations

	NodeJS to Fedora preparation

	Milestones (due 09/04/2020)

	Native-run enablement (milestone label: native-run (09/04/2020))

	Upstream preparation (milestone label: upstream-prep (09/04/2020))

	Initial NodeJS bring-up (milestone label: nodejs (09/04/2020))

Table of contents generated with markdown-toc

Milestones (Due 11/28/2020)

Upstream to V8

In this milestone, we will rebase to the latest tip of V8 development branch and try to land our codebase to V8 repo

C-extension support

Initial support for C-extensions:

	Add simulator, assembler, disasm support for C-extension instructions

	Generate C instructions in macro-assembler

	Develop tools to estimate the percentage of instructions that can be converted to C-extensions (limit study)

Future optimizations on C-extension instruction support can be handled in the next milestone

Initial performance analysis

The goal of this milestone is to figure out where optimization opportunities are. We will focus on:

	Developing tools to identify inefficient code-gen (https://github.com/riscv/v8/issues/291 and https://github.com/riscv/v8/issues/195)

	A detailed analysis on the performance gaps identified

Milestones (Due 10/09/2020)

We will focus on steps to bringing V8/Nodes to the community and start on optimizing performance

Upstream to V8

We have satisfied most of the requirements from the previous meeting w/ V8 team (e.g., rebase, stress-opt, release build testing, refactoring). Need to go through the upstream (code review) process and resolve any issues raised. Not sure if V8 upstream requires us to cross-build using LLVM. And the actual timing of the upstream depends on input from V8 team.

V8 upstream is also the prerequisite for releasing NodeJS to Fedora.

Performance Optimizations

Start to investigate performance and track performance numbers. We do not have specific performance goals for this month’s milestone, but would like to setup the system for performance tuning and optimization.

NodeJS to Fedora preparation

Focus on bringing up the native build (as opposed to the cross-compiled build). If there are additional dependencies, this task may take some time to complete.

Milestones (due 09/04/2020)

This is the first milestone since the open-sourcing of v8-riscv.

Native-run enablement (milestone label: native-run (09/04/2020))

Status: Done. Qemu/HiFive success-rate is on-part w/ simulated build and all the additional failures are reported.

The goal is to achieve a high success rate (95%+) on cctest when running v8-riscv in QEMU or HiFive board. Currently, v8-riscv simulated build achieves 94%+ success rate, but, for native/qemu runs, the success rate is much lower (see HiFive testing status [https://github.com/riscv/v8/wiki/Testing-Status#running-on-hifive-unleashed-board]). In particular, cctest only achieves 64% success rate on HiFive. We choose cctest success rate as the target because most bugs can be exposed by cctest and the test cases in cctest are much easier to debug than other test suites.

The milestone is the top priority for this month and is tracked on the project board here [https://github.com/riscv/v8/projects/1].

Upstream preparation (milestone label: upstream-prep (09/04/2020))

Status: Done

Our goal is to upstream to V8 in the next two months. This milestone consists of:

	[x] rebase to the latest V8 main branch; current code base was forked from (tag: 8.1.268, Date: Thu Jan 23 11:38:01)

	[x] test release build with stress-opt options as well as performance benchmarks

	[x] some code refactoring

Item 1 is the main work. Items 2 and 3 are mostly done and not blockers.

The milestone is tracked on the project board here [https://github.com/riscv/v8/projects/3].

Initial NodeJS bring-up (milestone label: nodejs (09/04/2020))

** Status: Done** NodeJS passes 2000 Node tests with only 13 additional failures.

Since NodeJS is one major application to show-case v8-riscv, we will kick-off the enablement of NodeJS this month. The goal is to

	[x] enable some demos of NodeJS using v8-riscv (for RISC-V Global Forum Talk)

	[x]setup NodeJS repo and proper documentation for others to try it out

	[x]run NodeJS test cases and create work items

We will define a success-rate target for this milestone after running test cases.

The milestone is tracked on the project board here [https://github.com/riscv/v8/projects/4].

Overall Porting Strategy

When we first started the project back in January, we did a thorough study of the V8 backend architecture and made the following observations

	V8 is a sophisticated and mature language VM that has gone through several major software architectures refactoring;

	Most architecture-specific codes constitute only a small fraction of the entire V8 code-base;

	Unlike other language VMs, V8 code-gen involves a lot of assembly codes, and even the “interpreter” execution requires code-gen;

	V8 already supports multiple backends (x86, arm/64, mips/64, ppc/64, s390) and all of them share a similar structure;

	V8 provides a rich set of test cases and can test both at JS level and below JS level (e.g., cctest and unittests).

We realized the major challenge of developing the RISC-V backend is managing the complexity because

	it is unlikely we will be able to completely understand V8 in a short time;

	the assembly codes in the backend are especially hard to comprehend;

	debugging the generated code in V8 is especially hard compared to other compilers.

To manage such complexity, we progressively define the Minimal Viable Product (MVP) at each phase of the porting. We also leverage as much as possible existing backends. Since the RISC-V ISA is heavily influenced by MIPS ISA, we choose the MIPS64 backend as the base and gradually morph it into the RISC-V backend.

Since debugging is a big challenge in developing a new backend in V8, being able to expose bugs in a minimal test case is especially important to development productivity. Our testing strategy details the order by which V8 standard test cases are enabled.

And finally, we constantly improve our debugging methods and develop tools (see how to debug V8 backend).

Milestones

Phase I: basic RISCV64 backend running in the simulated build

Approach
At this phase, we aim at developing a functioning RISC64 backend (no code-gen optimization) that can pass all V8 test cases in the simulated build. The simulated build is a unique feature of V8 that allows V8 in the X86 binary form to run on the host machine (i.e., x86), but let the code generator in V8 produce RISCV binaries. When running the generated RISCV binary, V8 automatically switches to a built-in RISCV simulator (see src/execution/riscv64/simulator-riscv64.cc).

This approach offers tremendous benefits in development productivity:

	The entire development life cycle (coding, testing, debugging, CI) happens on x86 and is a lot faster than running in QEMU or real hardware;

	The built-in simulator can emit disassembled instruction traces (e.g., --trace-sim) which combined with --print-all-code is our most effective debugging tool;

	It allows us to run CI as part of our DevOps for the enabled tests on a general-purpose server.

Status
We are currently at the end of Phase I (see testing status). Now, most of the known failures are triaged. One of the test cases that we are debugging, mjsunit/asm/poppler.js, is a large js file that runs millions of instructions.

Known limitations

	The generated code quality is poor, and code size may be large as we deliberately not do any code-gen optimization to avoid introducing bugs before a working baseline is established

	Simulated build runs on x86, not on QEMU or actual hardware, so it is not yet a completely functioning solution.

Phase II: enable 64-bit native build

In this phase, we build V8 as RISC-V binary and make V8 code-gen generate RISC-V binary as well. In principle, V8 itself is built by gcc or LLVM. So the porting is mainly to bridge the gap between native ABI and simulator’s ABI and possible mismatch between simulated instruction semantics and actual hardware instruction semantics (e.g., corner cases for floating-point NaN and kInvalid bit setting), as well as additional constraints on memory available on the real hardware.

We will follow the same order of test case enablement in this step as that used in developing the simulated build in Phase I.

	Running in QEMU (Linux distribution: Debian)

Following the MPV approach, we will enable native build in QEMU first as the development environment will still be on x86.

	Running on real board (board specifics to be decided)

This step is another incremental step from running the native build in QEMU.

Phase III-a: enable 32-bit support

TO BE ADDED

Phase III-b: enhancement

	Code-gen optimization

	Support for the compact instruction set

	Support for other RISC-V ISA extensions

	SIMD ISA support especially for WebAssembly

 The v8 project has an extensive suite of tests cases. This repositories automated testing runs all of the standard test suites:

	cctest

	unittests

	wasm-api-tests

	wasm-js

	wasm-spec-tests

	mjsunit

	intl

	message

	debugger

	inspector

	mkgrokdump

The official set of tests which must be verified before opening a pull request should be run using the script:

For the debug build:

tools/dev/gm.py riscv64.debug.checkall

For the release build:

tools/dev/gm.py riscv64.release.checkall

Additional flags, such as --progress=verbose may be useful.

Individual suites can be run as shown below:

tools/run-tests.py --outdir=out/riscv64.debug cctest

When a test fails, it should print the command used to run that one individual test. For example, to run a single cctest:

cd out/riscv64.debug
./cctest test-macro-assembler-riscv64/Ror

 This page describes how to build V8 for execution on the built-in RISC-V simulator. It is assumed that you have already followed the steps to get the source.

	Install prerequisites

	Build v8 for RISC-V Simulation of an x86-64 Host

	Configure with GN

	Build with Ninja

	Build v8 Release Simulated Build

	Build with gm.py

Table of contents generated with markdown-toc

Install prerequisites

The following script will use apt to install any packages required for building v8. You will need sudo access to install the packages.

cd $V8_ROOT/v8
./build/install-build-deps.sh

Build v8 for RISC-V Simulation on an x86-64 Host in Debug Mode

Build with gm.py

The following command builds a debug build for an x86-64 executable for v8 which generates RISC-V code and executes it within a builtin RISC-V simulator.

tools/dev/gm.py riscv64.debug.all

The generated files can be found in out/riscv64.debug/.

If you plan to use gdb to debug v8, it will be useful to add the flag v8_optimized_debug=false to the arguments in out/riscv64.debug/args.gn. Without this, the code is optimized by default and will be difficult to debug.

Build Release Mode

Build with gm.py

To compile the release build (note: this only builds d8 but none of the test binaries):

tools/dev/gm.py riscv64.release

The generated files can be found in out/riscv64.release/.

Next, continue to Run Tests

Date: 3/17/2021

Agenda

	Announcements

	Community updates

	Upstreaming updates

	Action item follow-ups

	Open PR Discussion

	Presentations for any recent/planned developments

Minutes

	Announcements

	Initial commits have been merged

	Sparkplug patch has been commited

	Work on node.js has been started and initial builds have passed

	v8 repo has been moved under riscv/v8

	Community Updates

	Managed runtimes group (java specific) sent out call for chair and co-chair

	RISC-V foundation has setup a basic infrastructure for the specification and software

	There is talks about setting up a group for performance modeling and performance profiling tools

	Upstreaming

	still waiting to get a proper privilege to thumbs up code.

Action Items

	Changes to the CI in regardes to the master, riscv64, and riscv64-dev branches

	Addition of architecture flags for compilation

Other

	Working with RISC-V International to get internship positions for v8.

Date: 3/3/2021

Agenda

	Announcements

	Community updates

	Upstreaming updates

	Action item follow-ups

	Open PR Discussion

	Presentations for any recent/planned developments

Minutes

	Announcements

	The initial support of SparkPlug for RISC-V is [done] (https://github.com/riscv/v8/tree/riscv-sparkplug-dev)

	tensorflow.js can run a the simple [demo] (https://www.tensorflow.org/js/tutorials/setup) on the [RISC-V node.js] (https://github.com/riscv/node/)

	Upstreaming

	still waiting to get a proper priviledge to maintain and review+ the RISC-V arch files

	Other updating

	[Test status] (https://github.com/riscv/v8/wiki/Testing-Status) in wiki page is updated.

	The github issue and prs had been reviewed and cleaned up

	C-ext support can run benchmark

Action Items

	check and fix issue #53, #166, #297, #403, #414

	test result for SparkPlug

	moving on of C extension merge and evaluate

Date: 2/17/2021

Agenda

	Announcements

	Community updates

	Discuss workflow after upstreaming (#442)

Minutes

	Announcements

	The Chromium team has released SparkPlug [https://bugs.chromium.org/p/v8/issues/detail?id=11420]:

Sparkplug is a new baseline, non-optimising second-tier compiler, designed to fit in the compiler trade-off space between Ignition and TurboProp/TurboFan.

	Community updates

	Chairs for all RISC-V task groups are in a renominating process

	RISC-V is holding several Forums in April and May - Events [https://riscv.org/events/category/riscv-events/]

	RISC-V has some time slot at ISC [https://www.isc-hpc.com]

	Software has two new TGs

	Performance modeling tools

	Performance profiling and monitoring tools

	RISC-V is pushing extension/ISA groups to ensure that there are no encumbered (patents, copyrights) items in their proposals

	Brice is working with Sanhong from Alibaba on a charter for the Managed Runtimes group

	Will share with the team for input (on Slack)

	It seems progress on JDK upstreaming is very slow

	Upstreaming status

	Yahan and Brice now have access to start trybots for our Gerritt reviews

start default trybots
git cl try
start RISC-V trybots
git cl try -B luci.v8.try -b v8_linux64_riscv64_rel_ng

	Brice requested port committer status for some of us, so that we may apply the “Code-Review +1” label (equivalent of a LGTM)

	Waiting to hear back on that

	We will need to wait for a full committer to approve changes for now

	Discuss workflow after upstreaming (#442)

	We will plan to make changes in our GitHub repo (this one), do our own code reviews here, then open upstream pull requests on Gerritt

	If others submit changes upstream, we should review them, and also encourage the developers to join our group

	How should we keep up-to-date with upstream?

	Mirror upstream into master branch automatically

	Run our regression tests on master to quickly identify problems caused by upstream changes

	Rebase riscv64 branch regularly on to master

	Brice will create a wiki page to describe the process of how we should stay in sync with upstream and the process that developers should follow to start new work

	Qiuji will triage the issues from upstream and assign them to the team as needed

	Derek suggested pushing the C extension changes without jumps as a separate pull request

	Agreement from the group

Action Items

	[] Create wiki page to describe new process for working with upstream - Brice

	[] Open merge request for C extension (without jumps) - Derek

Date: 1/20/2021

Agenda

	Announcements

	Community updates

	Upstreaming updates

	Action item follow-ups

	Open PR Discussions

	Presentations for any recent/planned developments

	Miscellaneous

Minutes

	Community Updates:

	There will be a RISC-V retreat on 1/27/2021 and 1/28/2021 Beijing time. Derek and Chao will showcase running V8 on PicoRio hardware.

	Upstreaming Updates:

	Current rebase has some build failures.

	The planned current PRs that will be pushed in to master will be #379 [https://github.com/riscv/v8/pull/379], #384 [https://github.com/riscv/v8/pull/384], #393 [https://github.com/riscv/v8/pull/393].

	Let Brice know if there are any PRs you would like to be added.

	Updates from Wei about RVI meetings:

	There are plans for a performance tracking system on the compiler side.

	There will be another bi-weekly meeting 1/21/2021 afternoon Beijing time. Wei will update us on what he learns there.

	J-Extension group work is currently focusing more on security.

	Miscellaneous

	In future meetings we will be moving presentations to the start.

	Wei would like to test using Qemu’s User Mode for increased regression testing speeds.

Action Items

	upstreaming: fix build issue and push in PRs.

	Setup PTS for V8 (@ww)

	Test Qemu’s User Mode (@ww)

	Continue c-ext support work(@Derek Tu)

Date: 1/7/2021

Agenda

	Announcements

	Community updates

	Upstreaming updates

	Action item follow-ups

	Discussion about the Wishlist 2021 for V8 for RISC-V project

	Present recent develop progress status if any(RVV-Wasm support, Performance analyze vs ARM64 etc.)

Minutes

	Upstreaming issues:

	need to separate RV32 modifies from the current RV64 modifies(apply to Georg Neis’s comments)

	Updates from Wei about RVI meetings:

	PLCT will set up the Performance Tracking System(PTS) for the Code speed group. V8 will be the first one put to the target software.

	Action items follow-ups:

	issue370 need to be checked with OS guys to see how to flush icache for JIT.

	issue 372/373/375/376/378 need to be clarified(low priority)

	pr309 need to be closed. pr379 need to be reviewed

	Wishilist for 2021 is discussed and priority confirmed:

	upstream(1st)

	node.js support(2nd)

	wasm and JS speedup(3rd)

	ISA extension support(4th)

	Yahan introduced progressing for Wasm-RVV. He adds new register type declaration for the non-overlayed vector registers.

	Qiuji reported some result for performance evaluation of V8-RISCV. The result is comparing to ARM64.slides [https://github.com/riscv/v8/wiki/media/Register-Allocator-in-V8.pdf]

Action Items

	upstreaming: apply to Georg Neis’s comments

	clean up github issues and prs:

	issue370(@qiuji)

	pr309(@taoliqiang)

	pr379(@luyahan)

	issue 372/373/375/376/378(@luyahan & @qiuji)

	issue258 (give a investigate report to it @qiuji & @taoliqiang)

	Setup PTS for V8 (@ww)

	Re-start c-ext support work?(@Derek Tu)

Date: 12/23/2020

Agenda

	Announcements

	Community updates

	Upstreaming updates

	Action item followups

	Review open PRs and determine next actions

Minutes

	We will start rotating hosts for the meeting between PLCT, RIOS, Peng, and Futurewei

	PLCT lab will host the next one

	Updates from Wei about RISC-V International meetings

	Code speed group is approved

	Performance tracking task group will define scripts to run benchmarks and post results to a website

	Plan to build Java and JS speed task groups

	Yahan shared a roadmap for adding the V extension support to V8 slides [https://github.com/riscv/v8/wiki/media/add_rvv.pdf]

	Defined 2 phases: prepare and implement

	Discussed timing and testing of this work

	Probably a subset of the V extension will be sufficient to support the WebAssembly instructions, so be sure to focus on this first

	Brice completed the release of the RPMs

	We may want to trigger releases for specific tags in addition to the LATEST

	Perhaps use a special prefix

	Derek announced that RIOS will hold a student led summit on Jan 20 where he will demonstrate V8 on a PicoRio

	He will pause work on the C extension until after this

	Wei discussed setting goals for 2021

	Speed up V8 on RV64GC

	Support V extension, C extension, B extension

	Node.js

	Peng brought up real world usage, including browser, ML (tensorflow.js)

	After upstreaming, we will need to update our workflow

	Will likely need to keep branches for unratified extensions in our repo, not upstream

Action Items

	Review open issues and close or update outdated ones (all)

	Review open PRs and rebase or address open comments (Nekhlyudov, Yahan, Derek, Liqiang)

	Provide some input to Wei about goals for 2021 (Peng, Reza, Brice)

Date: 12/09/2020

Agenda

	Announcement

	V8 re-base update and outstanding issues (Brice)

	RISC-V community news (Wei)

	Follow-up from the last meeting

	Technical presentation: register allocator study (Qiuji)

	Open discussions

Action items

	Setup GitHub Actions to add release builds - @Brice

	Give Qiuji code review permission - @Brice

Date: 11/11/2020

Agenda

	V8 re-base update and outstanding issues (Brice)

	RISC-V community news (Wei)

	Follow-up from the last meeting

	Technical presentation: J-extension group pointer-masking proposal and analysis on V8 (Peng)

	Open discussions

Highlights

	On the pointer-masking discussion, the intuitive feeling is that V8 (a managed runtime w/ already a lightweight isolation mechanism) may not be a good candidate for pointer-masking (i.e., because the software solution already provides pretty good isolation protection, and using a HW solution is a lot more rigid). We decide to be more explicit in voicing this opinion to the J-extension workgroup.

Action items

	Add a release wiki page on how people can gain access to pre-built v8 binary

	Give a presentation on the algorithm to extend V8 register allocator for C-extension instructions (qiu ji)

Date: 10/28/2020 6pm PT

Agenda

	Announcement

	V8 re-base update (Brice on new problems discovered and outstanding issues)

	Follow-up from the last meeting

	Technical presentation: how does V8’s register allocator work? (Derek & Liqiang)

	Technical presentation: how to support C-extension instruction code gen (Reza)

	Technical presentation: preliminary performance analysis (Wei)

	Technical presentation: J-extension group pointer-masking proposal and analysis on V8 (Peng) [if time permits]

	Open discussions

Action Items

	Participate in the code-speed workgroup meetings (Wei, Brice, Peng)

	Give a presentation to compare the J-extension proposal and V8’s compressed-pointer implementation (did not have time to cover this week, Peng)

	Setup 3rd party package distribution of our cross-compiled V8/Node binary (carried over from the last meeting, Wei)

	Write up the next steps for the register allocation study for Liqiang & Derek (Peng)

	Share today’s slides to repo wiki (https://github.com/riscv/v8/wiki/Content-sharing) (liqiang, reza, yahan)

	Present the lgorithm to extend V8 register allocator for C-extension instructions (liqiang, reza, derek)

Date: 10/14/2020 6pm PT

Agenda

	Announcement (J-extension group)

	V8 upstream update (Brice: rebase, cpid, using gcc tool-chain)

	Follow-up from the last meeting

	Additional C-extension support discussion (Peng et al)

	Open discussions

Highlights

	Wei updated us the recent reorg/changes in RISC-V international taskgroup organization, there may be opportunities for us to take some initiatives or participate in other workgroups

	Discussed how to generate C-extension instructions in macro-assembler: may need to teach register allocator to generate instructions that satisfy constraints of C-extension instructions (i.e., smaller groups of registers and reusing 1st operand as destination register)

Action items

	Update testing status for this week (Wei)

	Attend code-size optimization workgroup (Peng, Wei)

	Add a wiki page to summarize how our codebase satisfies the upstream criteria (Brice)

	Give a presentation to compare J-extension proposal and V8’s compressed-pointer implementation (carried over from last week, Peng)

	Setup 3rd party package distribution of our cross-compiled V8/Node binary (carried over from last week, Wei)

	Give a presentation on how V8 register allocator works (Liqiang and Derek)

	Define milestone for this month, especially define the performance analysis requirement (Peng)

	Give a presentation on benchmark performance comparison between RISC-V and MIPS64 (Wei?)

	Create issues for the next steps of C-extension implementation and assign (Peng)

Date: 09/30/2020 6pm PT

Agenda

	Follow-up from the last meeting

	Open discussion

Highlights

	Many test failures are resolved compared to status of two-weeks ago

	We discussed how to find a reasonable path to distribute V8/Node binary to end-users

Action items

	Check w/ V8 team whether building w/ LLVM is a requirement for upstream (Peng)

	Define exactly what needs to be done to solve the tools dependency for native build (required by both Debian and Fedora) and open an issue to track it (Brice)

	Setup a 3rd party package distribution of our cross-compiled V8/Node binary (Wei)

	Present a comparison of J-extension’s pointer-masking proposal and V8’s compressed pointer feature (Peng)

Date: 09/16/2020 6pm PT

Agenda

	Announcement (V8 global forum talk, V8 upstream prep)

	Follow-up from the last meeting

	Update on CI and Node native build (Brice)

	C-extension support discussion (Peng et al)

	Open discussion

Highlights

	Finally, CI is restored

	Cross-building of NodeJS is streamlined, script in the repo, instruction on the wiki

	Agreed on the partition of C-extension support among Chao, Derek, Liqiang, and Thomas

Action items

	Prioritize failures exposed by release and stress-opt and identify critical ones (Peng, carried from last week)

	Discuss w/ Fedora team members on the next steps to resolve dependence on other tools (cipd, etc) (Brice)

	Investigate style guide and other requirements for V8 upstreaming (Brice)

	Open an issue on generating optimized codes for atomic constructs (Peng)

	For bi-weekly testing status update on the wiki, add the delta compared to the previous report (Wei)

	For the comprehensive CI tests (after a PR is approved), if there is regression, report it on Slack and notify owners of the PRs involved (Wei)

Date: 09/02/2020 6pm PT

Agenda

	Follow-up from the last meeting

	09/04 milestone summary(latest testing status) (Peng et al)

	Monthly milestones for 09/07 ~ 10/09

Discussions

	Agreed on Sept-October milestones: focus on V8 upstream, get started on performance work

Action items

	Enable external CI cloud instance (Wei expects to complete by next Monday, otherwise pass WIP PR to Brice)

	Send instructions on how to run Node tests to Brice (Yahan)

	NodeJS setup (carried over from last meeting, Yahan/Brice)

	Automate generation of testing status and add release build results for QEMU/HiFive next time (Wei)

	Prioritize failures exposed by release and stress-opt and identify critical ones (Peng)

Date: 08/19/2020 6pm PT

Agenda

	New attendee introduction & announcement

	Follow-up from last meeting

	Technical content: how to debug v8 (Brice) - slides [https://github.com/riscv/v8/wiki/media/Debugging.pptx]

	09/04 milestone progress (latest testing status) (Peng et al)

	Open discussion: optimizations (all)

Discussions

	Heads up on September goals: optimization, C-extension, V8 upstream, v8-riscv release

	Optimization: two tracks 1) development track will focus on low-hanging performance optimizations (e.g., constant pool, function prologue/epilogue optimization, improve codegen in TurboAssembler and code-generator), 2) performance track will do some performance analysis on benchmarks (e.g., compare against MIPS64) and tools development

	C-extension discussion: 1) RISC-V is a custom modular ISA, how to detect which extensions are supported by the hardware (deal w/ the ISA fragmentation and complexity); 2) estimate the code-size benefit of C-extension

Action items

	Enable CI on external cloud instance (need to send the result back to github via REST API) (Wei)

	Setup NodeJS repo under V8 (Brice)

	PLCT team sign Google CLA (Wei)

	Capture all qemu & HiFive board failures into issues (Wei)

	Include release build in QEMU and HiFive runs (Wei)

Date: 08/05/2020

Agenda:

	New attendee introduction

	Follow-up from last meeting

	August milestones [https://github.com/riscv/v8/wiki/Monthly-milestones] & project operation (Peng)

	Cross-compiled and native build progress (Wei et al)

	Work-group status update (all)

Discussions:

	Github wiki and RIOS documentation site: 1) Wei mentioned that RTS and markdown can be intermixed in documents, need to figure out whether
it is possible to have markdown document working w/ RIOS’s RTS documentations; 2) find tools to automatically convert from markdown to reST format

	RISCV32 support: Wei’s team has experimented with building 32-bit V8 on Yocto/OpenEmbedded and encountered major toolchain issues (gdb and gcc?)

Action items:

	Resolve the synchronization of the github wiki and RIOS documentation site (Ye)

	Run simulated build failures in real hardware to see if they also fail in real hardware (Wei)

	Set-up a mechanism to update testing status wiki (simulated, qemu, HiFive) with latest results before the bi-weekly developers’ meeting (Wei)

	NodeJS demo video fro Global Forum talk (Yahan & Brice)

Date: 07/22/2020 (6pm PT/9am Beijing)

Agenda:

	Brief introduction of participant (all)

	Information sharing (Peng et al)

	Github/Slack operation rules (Brice)

	Testing status for simulated build (Peng)

	Introduction of work-groups (Peng)

	Suggestions & discussions (all)

Information sharing:

	Our talk proposal was accepted to RISC-V Global Forum (September)

	Got feedback towards v8 upstreaming: our simulated build testing results are quite promising, suggest to do additional stress-test on compiler and optimization, release-build tests, and run the performance suite

Action items:

	Define milestones for early September (Peng)

	CI efficiency issues not fully resolved, need help from anyone w/ experience of setting up CI (?)

	Address permissions of adding labels or re-assign issues (Brice)

	Wei’s team present cross-compiled build status next time (Wei)

	Resolve how to setup wiki repo that is most convenient to us (Ye, Brice, Peng)

Find uploaded materials from all meetings here

NOTE: current riscv64 branch is under rebasing & upstreaming. I’ll update the page after all compilation passes.

This page lists the latest test results for different builds. The statistics are presented in the following format

	Test stats are listed as +passed/-failed (e.g., +1000/-2)

	Run-rate is the percentage of total tests run (including both passed and failed tests), less than 100% run-rate means that some tests are skipped by the test driver (e.g., runs too long, or known failures that are being investigated). Skipped tests can be found in <test-suite>.status files.

	Running on HiFive Unleashed board

	V8 test suite debug build on hifive

	benchmark

	V8 test suite release build on hifve

	benchmark

	NodeJS test suite (Debug Build)

	NodeJS test suite (Release Build)

	Running in QEMU

	Debug Build

	Release Build

	Running on x86 via simulated v8-riscv build

	Debug build w/ default options

	Debug build w/ stress options

	Release build testing w/ default options

	Release build w/ the stress options

Table of contents generated with markdown-toc

Running on HiFive Unleashed board

HiFive Unleashed board details:
Parameter	
SoC	SiFive Freedom U540 SoC
Memory	8GB DDR4 with ECC
OS Version	Fedora Developer Rawhide [Fedora-Developer-Rawhide-20200108.n.0]

V8 test suite debug build on hifive

Test Suite	Tests passed (run-rate)	Notes
cctest	+ 6973/- 2	failed
unittests	+ 3272/- 0	success
mjsunit	+ 5022/- 4	failed
intl	+ 212/- 0	success
message	+ 309/- 0	success
inspector	+ 277/- 0	success
mkgrokdump	+ 0/- 0	success
debugger	+ 316/- 0	success
wasm-js	+ 61/- 0	success
wasm-spec-tests	+ 174/- 5	failed
wasm-api-tests	+ 15/- 0	success

benchmark

sunspider

 benchmark: score | master_ | % |
===+==========+========+
 3d-morph-sunspider: 1159.4 | 1160.0 | |
 3d-raytrace-sunspider: 2039.7 | 2043.7 | 0.2 |
 access-binary-trees-sunspider: 381.3 | 380.8 | -0.1 |
 access-fannkuch-sunspider: 1391.4 | 1390.6 | |
 access-nbody-sunspider: 475.4 | 475.1 | |
 access-nsieve-sunspider: 903.8 | 903.3 | |
 bitops-3bit-bits-in-byte-sunspider: 185.0 | 184.5 | -0.3 |
 bitops-bits-in-byte-sunspider: 190.6 | 190.6 | |
 bitops-bitwise-and-sunspider: 274.5 | 274.5 | |
 bitops-nsieve-bits-sunspider: 1021.8 | 1021.4 | |
 controlflow-recursive-sunspider: 280.0 | 280.4 | 0.1 |
 crypto-aes-sunspider: 1374.8 | 1375.9 | |
 crypto-md5-sunspider: 1070.7 | 1069.9 | |
 crypto-sha1-sunspider: 1322.8 | 1322.9 | |
 date-format-tofte-sunspider: 1315.8 | 1315.9 | |
 date-format-xparb-sunspider: 1886.7 | 1885.8 | |
 math-cordic-sunspider: 562.4 | 562.4 | |
 math-partial-sums-sunspider: 1546.1 | 1546.1 | |
 math-spectral-norm-sunspider: 357.0 | 356.2 | -0.2 |
 regexp-dna-sunspider: 210.2 | 210.2 | |
 string-base64-sunspider: 2586.0 | 2586.4 | |
 string-fasta-sunspider: 1495.1 | 1495.5 | |
 string-tagcloud-sunspider: 1854.5 | 1855.2 | |
 string-unpack-code-sunspider: 2182.4 | 2181.1 | |
 string-validate-input-sunspider: 1409.1 | 1410.8 | 0.1 |
 SunSpider: 29311.1 | 29315.7 | |
---+----------+--------+

octane

 benchmark: score | master_ | % |
===+==========+========+

 Richards: 691.3 | 691.7 | |
 DeltaBlue: 64.3 | 86.4 S -25.6 |
 Crypto: 288.6 S 284.8 S 1.3 |
 RayTrace: 584.3 | 578.4 S 1.0 |
 EarleyBoyer: 315.3 | 311.4 S 1.3 |
 RegExp: 29.1 | 29.1 | |
 Splay: 423.2 | 427.3 | -1.0 |
 SplayLatency: 1601.2 S 1739.3 S -7.9 |
 NavierStokes: 621.1 | 623.4 | -0.4 |
 PdfJS: 121.4 | 121.4 | |
 Mandreel: 199.6 | 200.2 | -0.3 |
 MandreelLatency: 274.2 | 274.4 | |
 Gameboy: 140.8 | 140.8 | |
 CodeLoad: 851.2 | 853.9 | -0.3 |
 Box2D: 130.6 | 128.6 S 1.6 |
 zlib: 977.3 | 976.1 | 0.1 |
 Typescript: 203.2 | 201.9 | 0.6 |
 Octane: 286.4 S 289.8 S -1.2 |
---+----------+--------+

kraken

 benchmark: score | master_ | % |
===+==========+========+
 ai-astar-orig: 6184.6 | 6197.3 | 0.2 |
 audio-beat-detection-orig: 6330.7 | 6329.2 | |
 audio-dft-orig: 5271.4 | 5280.0 | 0.2 |
 audio-fft-orig: 3530.1 | 3527.9 | |
 audio-oscillator-orig: 4358.9 | 4360.5 | |
 imaging-gaussian-blur-orig: 8068.8 | 8069.2 | |
 imaging-darkroom-orig: 6232.2 | 6234.7 | |
 imaging-desaturate-orig: 4206.6 | 4211.6 | 0.1 |
 json-parse-financial-orig: 2841.4 | 2841.7 | |
 json-stringify-tinderbox-orig: 1010.4 | 1010.5 | |
 stanford-crypto-aes-orig: 6609.9 | 6631.5 | 0.3 |
 stanford-crypto-ccm-orig: 9544.2 | 9565.3 | 0.2 |
 stanford-crypto-pbkdf2-orig: 8068.4 | 8085.6 | 0.2 |
 stanford-crypto-sha256-iterative-orig: 2838.5 | 2842.8 | 0.2 |
 Kraken: 75096.0 | 75187.8 | 0.1 |
---+----------+--------+

V8 test suite release build on hifve

Test Suite	Tests passed (run-rate)	Notes
unittests	+ 3720/- 0	success
cctest	+ 6969/- 4	failed
mjsunit	+ 5037/- 6	failed
intl	+ 212/- 0	success
message	+ 309/- 0	success
inspector	+ 277/- 0	success
mkgrokdump	+ 0/- 0	success
debugger	+ 317/- 0	success
wasm-js	+ 62/- 0	success
wasm-spec-tests	+ 174/- 5	failed
wasm-api-tests	+ 17/- 0	success

benchmark

sunspider

 benchmark: score |
===+
 3d-raytrace-sunspider: 2049.1|
 access-binary-trees-sunspider: 384.2 |
 access-fannkuch-sunspider: 1382.4 |
 access-nbody-sunspider: 475.9 |
 access-nsieve-sunspider: 894.6 |
 bitops-3bit-bits-in-byte-sunspider: 184.3 |
 bitops-bits-in-byte-sunspider: 192.9 |
 bitops-bitwise-and-sunspider: 276.8 |
 bitops-nsieve-bits-sunspider: 1009.5 |
 controlflow-recursive-sunspider: 280.3 |
 crypto-aes-sunspider: 1389.5 |
 crypto-md5-sunspider: 1079.7 |
 crypto-sha1-sunspider: 1327.5 |
 date-format-tofte-sunspider: 1327.2 |
 date-format-xparb-sunspider: 1917.7 |
 math-cordic-sunspider: 572.0 |
 math-partial-sums-sunspider: 1552.3 |
 math-spectral-norm-sunspider: 361.5 |
 regexp-dna-sunspider: 210.9 |
 string-base64-sunspider: 2596.0 |
 string-fasta-sunspider: 1496.0 |
 string-tagcloud-sunspider: 1868.5 |
 string-unpack-code-sunspider: 2184.5 |
 string-validate-input-sunspider: 1422.5 |
 SunSpider: 29477.0 |
---+

octane

 benchmark: score |
==========================+
 Richards: 684.2 |
 DeltaBlue: 65.6 S
 Crypto: 276.4 S
 RayTrace: 577.8 |
 EarleyBoyer: 313.2 |
 RegExp: 29.0 |
 Splay: 425.4 |
 SplayLatency: 1394.3 S
 NavierStokes: 615.9 S
 PdfJS: 120.6 |
 Mandreel: 201.3 |
MandreelLatency: 274.1 |
 Gameboy: 140.8 |
 CodeLoad: 853.7 |
 Box2D: 129.2 |
 zlib: 976.4 |
 Typescript: 200.8 |
 Octane: 280.7 S
--------------------------+

kraken

 benchmark: score |
===+
 ai-astar-orig: 6215.3 |
 audio-beat-detection-orig: 6354.3 |
 audio-dft-orig: 5213.4 |
 audio-fft-orig: 3538.3 |
 audio-oscillator-orig: 4374.5 |
 imaging-gaussian-blur-orig: 8097.9 |
 imaging-darkroom-orig: 6246.3 |
 imaging-desaturate-orig: 4205.5 |
 json-parse-financial-orig: 2842.0 |
 json-stringify-tinderbox-orig: 1005.8 |
 stanford-crypto-aes-orig: 6651.4 |
 stanford-crypto-ccm-orig: 9653.2 |
 stanford-crypto-pbkdf2-orig: 8109.6 |
 stanford-crypto-sha256-iterative-orig: 2857.0 |
 Kraken: 75364.7 |
---+

NodeJS test suite (Debug Build)

Test Suite	Tests passed (run-rate)	Notes
all	+2834/-13	

NodeJS test suite (Release Build)

Test Suite	Tests passed (run-rate)	Notes
all	+2910/-35	

Running in QEMU

Running on QEMU 5.0.0 with fedora developer 20200108.

commit 4950b382671c20e1900d02164d705178960502da

Debug Build

last update: 20210302 branch upstream 7314835361

Test Suite	Tests passed (run-rate)	Notes
cctest	+4749/ -27	
unittests	+3881/ -0	
mjsunit	+5112 / -0	log [http://paste.ubuntu.com/p/jzn6mv5kqd/]
wasm-spec-tests	+183 / -0	log [http://paste.ubuntu.com/p/Mgf35xgH9v/]
wasm-js	+57 / -0	log [http://paste.ubuntu.com/p/rVgZdQK47X/]
wasm-api-tests	+17 / -0	log [http://paste.ubuntu.com/p/ShngsNRYkD/]
intl	+228 / -0	log [http://paste.ubuntu.com/p/YdvtWqMCsF/]
message	+310 / -0	log [http://paste.ubuntu.com/p/cHsQMfQ28T/]
inspector	+290 / -0	log [http://paste.ubuntu.com/p/WDhSYvnp7n/]
mkgrokdump	+0 / -0	log [http://paste.ubuntu.com/p/zQ7v3ggvQ8/]
debugger	+316 / -0	log [http://paste.ubuntu.com/p/b7rK6zRv5C/]

Release Build

last update: 20201223 branch riscv64 fc127d87

Test Suite	Tests passed (run-rate)	Notes
cctest	+7170 / -5	log [http://paste.ubuntu.com/p/y6H7mF77T9/]
unittests	+3820 / -1	log [http://paste.ubuntu.com/p/wQPYnXbfW7/]
mjsunit	+5130 / -1	log [http://paste.ubuntu.com/p/CMhJshz749/]
wasm-spec-tests	+183 / -0	log [http://paste.ubuntu.com/p/rPhmg29z8s/]
wasm-js	+58 / -0	log [http://paste.ubuntu.com/p/QC42bBRHjf/]
wasm-api-tests	+17 / -0	log [http://paste.ubuntu.com/p/pjK27xHs5v/]
intl	+228 / -0	log [http://paste.ubuntu.com/p/STcTsptVxy/]
message	+310 / -0	log [http://paste.ubuntu.com/p/d6Jp4YwVNB/]
inspector	+287 / -0	log [http://paste.ubuntu.com/p/sFghHY89fY/]
mkgrokdump	+0 / -0	log [http://paste.ubuntu.com/p/WycZq5QhTg/]
debugger	+317 / -0	log [http://paste.ubuntu.com/p/BJDVdfHdxJ/]

Running on x86 via simulated v8-riscv build

The simulated build is built w/ x86 as host architecture and riscv64 as target architecture so that the v8 binary is in x86 but the code generated by v8 is riscv-64 binary and run in a riscv64 simulator embedded in V8.

Debug build w/ default options

last update: 20210302 branch upstream 7314835361

The following stats are obtained from CI test runs and can be reproduced as

tools/run-tests.py --outdir=<your-simulated-build-dir> <test-suites>

Test Suite	Test Status (run-rate)
cctest	+4746 / -21
unittests	+3884 / -0
mjsunit	+5197 / -1
wasm-spec-tests	+208 / -0
wasm-js	+57 / -0
wasm-api-tests	+17 / -0
intl	+293 / -0
message	+312 / -0
inspector	+264 / -33
mkgrokdump	+0 / -0
debugger	+307 / -9

To run one or more test suites listed below, specify your own simulated build directory, e.g.,

tools/run-tests.py --outdir=out.gn/riscv.gcc.simulated.debug/ <test suite>

Debug build w/ stress options

last update: 20210302 branch upstream 7314835361

The following stats are obtained from CI test runs and can be reproduced as

tools/run-tests.py --variants=stress --outdir=<your-simulated-debug-build-dir> <test-suites>

Test Suite	Test Status (run-rate)
cctest	+4720 / -21
unittests	+0 / -0
mjsunit	+0 / -0
wasm-spec-tests	+208 / -0
wasm-js	+57 / -0
wasm-api-tests	+0 / -0
intl	+228 / -0
message	+310 / -0
inspector	+0 / -0
mkgrokdump	+0 / -0
debugger	+307 / -8

Release build testing w/ default options

last update: 20210302 branch upstream 7314835361

The following stats are obtained from CI test runs and can be reproduced as

tools/run-tests.py --outdir=<your-release-build-dir> <test-suites>

Test Suite	Test Status (run-rate)
cctest	+4769 / -0
unittests	+3876 / -0
mjsunit	+5218 / -0
wasm-spec-tests	+208 / -0
wasm-js	+57 / -0
wasm-api-tests	+17 / -0
intl	+228 / -0
message	+312 / -0
inspector	+294 / -0
mkgrokdump	+0 / -0
debugger	+316 / -0

Release build w/ the stress options

last update: 20210302 branch upstream 7314835361

The following stats are obtained from CI test runs and can be reproduced as

tools/run-tests.py --variants=stress --outdir=<your-simulated-release-build-dir> <test-suites>

Test Suite	Tests passed (run-rate)
cctest	+4743 / -0
unittests	+0 / -0
mjsunit	+5181 / -0
wasm-spec-tests	+208 / -0
wasm-js	+57 / -0
wasm-api-tests	+0 / -0
intl	+239 / -0
message	+312 / -0
inspector	+0 / -0
mkgrokdump	+0 / -0
debugger	+315 / -0

 Debugging is a big challenge in developing a new V8 backend. Even the simplest JS test case can result in tens of thousands of dynamic instructions. Therefore, exposing bugs in a minimal test case is critical to the development productivity.

We have identified a specific ordering of test cases to be enabled that are proven effective in reducing the debugging time in our initial porting.

mksnapshot

mksnapshot compiles V8 built-in functions into target binaries using V8’s code generation backend. It is a necessary step in the standard V8 build process. These pre-compiled built-in function binaries are loaded during V8 initialization. Passing mksnapshot indicates that there is no error during the compilation process of these built-in functions using the target backend.

cctest

The normal V8 VM bring-up requires the initialization of hundreds of V8 builtin functions that are compiled by V8 (i.e., mksnapshot). Therefore, running even the simplest JS program of 1 requires executing a lot more V8 generated codes than we expect. Fortunately, the cctest test suites can circumvent the normal bring up of V8 VM and test some internal V8 APIs directly.

cctest consists of 6000+ C++ test cases that test all aspect of V8. For a new backend, it is a lot easier to expose bugs in the cctest. Passing cctest is an essential indicator of the basic functionality of a new backend.

We enable sub-tests of cctest in the following order:

	test-assembler-riscv64.cc tests the execution of each RISCV instruction (i.e., assembler-riscv64.cc, and simulator-riscv64.cc for simulated build).

	test-disasm-riscv64.cc tests disassembly (i.e., disasm-riscv64.cc) of each RISCV instruction.

	test-macro-assembler-riscv64.cc and test-simple-riscv64.cc tests the basic functionality of each TurboAssembler and MacroAssembler APIs (i.e., macro-assembler-riscv64.cc).

	compiler/test-run-machops.cc tests the target-specific code-gen of each machine-node IR (i.e., code-generator-riscv64.cc).

	interpreter/test-interpreter.cc tests individual interpreter handler.

	wasm/test-run-wasm-interpreter.cc tests for individual wasm-interpreter-bytecode.

	wasm/test-run-wasm-64.cc and test-run-wasm.cc test code-gen for individual WASM (32/64) IR.

	test-run-jsops tests individual JS operators.

	the rest of cctest.

unittests

Unit tests for all aspects of V8

fuzzer

This suite seems to enable test cases generated by the fuzzer. We have not figured out how to configure for the fuzzer to run, but fuzzing tests are often smaller test cases and would be good to enable before running mjsunit and wasm tests.

mjsunit

mjsunit consists of all JS test cases. After cctest and unittests are cleared, most of mjsunit tests will pass, but the remaining failures (albeit a small number of them) may take some time to debug. In particular, mjsunit/asm consists some fairly large applications including asm/poppler (a PDF rendering engine), asm/sqllite and lua.

wasm test cases

This includes wasm-api-tests, wasm-js, and wasm-spec-tests. Thought tests in the wasm-spec-tests are in .js form, the actual wasm code is expressed in the binary format of warm (wast). So far, we have not found a good way to debug binary form wasm codes.

mischellous

Other test suites include intl, message, debugger, inspector, mkgrokdump.

3rd-party benchmarks

(TO BE ADDED)

 This wiki documents our understanding on the platform-specific components of V8. The information is of interest to anyone who is adding a new machine platform to V8. We use the PPC and MIPS64 backends as examples.

	V8 Target-specific Backend Overview

	V8 Architecture-specific Components

	Assemblers

	Code Assembler (compiler/code-assembler.cc)

	Code Stub Assembler (codegen/code-stub-assembler.cc)

	Assembler (codegen/ppc/assembler-ppc.cc)

	Turbo Assembler (codegen/ppc/macro-assembler.cc)

	Macro Assembler (codegen/ppc/macro-assembler-ppc.cc)

	Porting summary

	Compiler Backend

	Instruction Selection

	Code Generation

	Instruction Scheduler

	Register Allocator

	Porting summary

	Simulator

	Target-specific Simulator Implementation

	Porting Summary

	Builtin Functions

	Builtin Function Implementation

	BUILTIN implementation

	TF_BUILTIN and IC_BUILTIN Implementations

	ASM Builtin Functions

	Initialization of Builtin Functions

	Porting Summary

	WASM

	WASM Interpreter

	Liftoff Compiler

	Porting Summary

	Other V8 Internals

	MIPS64 Register Usage Convention

	Calling Convention

	GeneratedCode<...>.Call via C varargs calling convention

	Native Call Setup

	Simulated Execution via Simulator::CallImpl()

	Calling JS Functions

	Platform-independent Invoke(...) Helper

	Target-specific: JSEntry() Builtin

	Target-specific: JSEntryTrampoline() builtin

	Target-specific: CallFunction() Builtins

	Calling a JS function to be Interpreted

	Calling WASM Functions: Execution::CallWasm()

	Linkage

	Internal Linkage Data Structures

	Builtin Functions Built w/ Different Linkage Conventions

Table of contents generated with markdown-toc

V8 Target-specific Backend Overview

V8 currently supports multiple architectures: x64, arm, arm64, ia32, mips, mips64, ppc, s390. Most architecture-specific codes are organized under architecture directories, such as compiler/backend/ppc or codegen/mips64/. Source files under architecture-specific directories are included by the build only if its corresponding CPU target is selected.

While most source codes outside architecture-specific directories are not specific to any architecture, but there are places where architecture-specific codes may be inserted in the common code paths. In those cases, the architecture-specific codes are guarded by macros such as V8_TARGET_ARCH_ARM.

Since the majority of architecture-specific supports are organized in architecture-specific directories, let’s take a look at those directories. The following list summarizes all architecture-specific source code directories in V8 (using PPC architecture as an example).

	Assemblers (codegen/ppc/): platform-specific assemblers such as Assembler, TurboAssembler, MacroAssembler; their APIs take registers as input and emit instructions to the instruction buffer;

	TF backends (compiler/backend/ppc/): Instruction selection (from TF machine node to PPC instructions), instruction type classification for register allocator

	V8 builtin functions (builtin/ppc/): implementation of builtin on target platform using PPC Turbo Assembler APIs

	V8 execution engine (execution/ppc): frame-constant, simulator (for simulator build)

	Diagnostic output (diagnostics/ppc): disassembler for PPC codes for diagnostic output

	Debugging support (debug/ppc): ppc code for GenerateFrameDropperTrampoline() using PPC turbo assembler APIs

	JIT Deoptimizer (deoptimizer/ppc): GenerateDeoptimizationEntries() using PPC turbo assembler APIs

	Regx (regexp/ppc): RegExp macro assembler using PPC turbo assembler APIs

	WebAssembly (wasm/baseline/ppc): LiftoffAssembler ()

There are also a small number of places that use the inline assembly may b.

V8 Architecture-specific Components

Assemblers

The directory codegen/ defines several important types of assemblers used throughout the V8 code generation. Interestingly, the CodeGenerator class is in fact declared under compiler/backend/code-generator.cc not under codegen/.

	Code assembler (defined under compiler/): platform-independent, APIs reflect TF machine-node IR, APIs create TFNodes

	Code stub assembler: platform-independent, macro-assembler built on top of CodeAssembler, APIs have JS semantics, APIs create TFNodes

	Assembler: platform-specific, APIs similar to target machine instructions

	TurboAssembler: platform-specific, built on top of TurboAssemblerBase (which is on top of Assembler), APIs write instructions to an instruction buffer

	MacroAssembler: platform-specific, macro-assembler built on top of TurboAssembler (w/ JS semantics?), APIs write instructions to instruction buffer

Code Assembler (compiler/code-assembler.cc)

Code assembler APIs are based on TurboFan (TF) machine-node IR. These APIs are close to machine-level instructions but are platform-neutral. Its API interfaces typically take TNode as inputs and returns TNode.

Below are examples of code assembler APIs defined in compiler/code-assembler.cc.

 TNode<WordT> WordShl(SloppyTNode<WordT> value, int shift);
 TNode<WordT> WordShr(SloppyTNode<WordT> value, int shift);
 TNode<WordT> WordSar(SloppyTNode<WordT> value, int shift);
 TNode<IntPtrT> WordShr(TNode<IntPtrT> value, int shift) {
 return UncheckedCast<IntPtrT>(WordShr(static_cast<Node*>(value), shift));
 }
 TNode<IntPtrT> WordSar(TNode<IntPtrT> value, int shift) {
 return UncheckedCast<IntPtrT>(WordSar(static_cast<Node*>(value), shift));
 }
 TNode<Word32T> Word32Shr(SloppyTNode<Word32T> value, int shift);
 TNode<Word32T> Word32Sar(SloppyTNode<Word32T> value, int shift);

Note that CodeAssembler APIs create TFNode.

Code Stub Assembler (codegen/code-stub-assembler.cc)

Code Stub Assembler (aka CSA) Provides JavaScript-specific “macro-assembler” functionality on top of CodeAssembler (where CodeAssembler is defined under compiler/code-assembler.cc). Unlike TurboAssembler and MacroAssembler, CSA is platform-neutral and the APIs of CodeStubAssembler consrtucts TNode graphs. Its API interfaces typically take TNode as inputs and returns TNode.

Below are some CSA assembler interfaces defined in codegen/code-stub-assembler.cc.

 // Smi | HeapNumber operations.
 TNode<Number> NumberInc(SloppyTNode<Number> value);
 TNode<Number> NumberDec(SloppyTNode<Number> value);
 TNode<Number> NumberAdd(SloppyTNode<Number> a, SloppyTNode<Number> b);
 TNode<Number> NumberSub(SloppyTNode<Number> a, SloppyTNode<Number> b);
 void GotoIfNotNumber(TNode<Object> value, Label* is_not_number);
 void GotoIfNumber(TNode<Object> value, Label* is_number);

CSA and CodeAssembler APIs are used to implement V8 builtin functions, Ignition bytecode handlers, that will be later compiled by TF backend to target-specific binaries.

Assembler (codegen/ppc/assembler-ppc.cc)

An assembler generates instructions and relocation information to a buffer, w/ the instructions starting from the beginning and relocation information beginning from the end. Unlike CSA, Assembler generates instructions to instruction buffer, its API interfaces usually take Register as inputs and void as output.

Assembler defines APIs that look very much like the assembly code-names of the target-platforms. So each target-platform will specify its list of such APIs (one for each target-architecture instruction).

Some of the PPC Assembler APIs are shown below. These APIs are named after PPC instruction names, thus closely resembles the programming interfaces of a typical assembler.

 void sub(Register dst, Register src1, Register src2, OEBit s = LeaveOE,
 RCBit r = LeaveRC);

 void subc(Register dst, Register src1, Register src2, OEBit s = LeaveOE,
 RCBit r = LeaveRC);
 void sube(Register dst, Register src1, Register src2, OEBit s = LeaveOE,
 RCBit r = LeaveRC);

 void subfic(Register dst, Register src, const Operand& imm);

 void add(Register dst, Register src1, Register src2, OEBit s = LeaveOE,
 RCBit r = LeaveRC);

 void addc(Register dst, Register src1, Register src2, OEBit o = LeaveOE,
 RCBit r = LeaveRC);
 void adde(Register dst, Register src1, Register src2, OEBit o = LeaveOE,
 RCBit r = LeaveRC);
 void addze(Register dst, Register src1, OEBit o = LeaveOE, RCBit r = LeaveRC);

 void mullw(Register dst, Register src1, Register src2, OEBit o = LeaveOE,
 RCBit r = LeaveRC);

Turbo Assembler (codegen/ppc/macro-assembler.cc)

A TurboAssembler is the primary interface to platform-specific assembler and is often referred to as tasm by CodeGenerator. It is a subclass of TurboAssemblerBase, which in turn is a subclass of Assembler.

TurboAssembler APIs are used to express target-specific “assembly” throughout V8 backend such as the use of TurboAssembler::Ld/Lw/And/Jump(...) in the following code snippet from compiler/backend/mips64/code-generator-mips64.cc:

void CodeGenerator::BailoutIfDeoptimized() {
 int offset = Code::kCodeDataContainerOffset - Code::kHeaderSize;
 __ Ld(kScratchReg, MemOperand(kJavaScriptCallCodeStartRegister, offset));
 __ Lw(kScratchReg,
 FieldMemOperand(kScratchReg,
 CodeDataContainer::kKindSpecificFlagsOffset));
 __ And(kScratchReg, kScratchReg,
 Operand(1 << Code::kMarkedForDeoptimizationBit));
 __ Jump(BUILTIN_CODE(isolate(), CompileLazyDeoptimizedCode),
 RelocInfo::CODE_TARGET, ne, kScratchReg, Operand(zero_reg));
}

While a significant part of TurboAssembler is platform-specific, some platform-independent APIs are separated into TurboAssemblerBase (defined in the common path of codegen/turbo-assembler.h and shared across different machine target).

Some of the target-independent APIs of TurboAssemblerBase are listed below.

 virtual void Jump(const ExternalReference& reference) = 0;

 // Calls the builtin given by the Smi in |builtin|. If builtins are embedded,
 // the trampoline Code object on the heap is not used.
 virtual void CallBuiltinByIndex(Register builtin_index) = 0;

 // Calls/jumps to the given Code object. If builtins are embedded, the
 // trampoline Code object on the heap is not used.
 virtual void CallCodeObject(Register code_object) = 0;
 virtual void JumpCodeObject(Register code_object) = 0;

 // Loads the given Code object's entry point into the destination register.
 virtual void LoadCodeObjectEntry(Register destination,
 Register code_object) = 0;

 // Loads the given constant or external reference without embedding its direct
 // pointer. The produced code is isolate-independent.
 void IndirectLoadConstant(Register destination, Handle<HeapObject> object);
 void IndirectLoadExternalReference(Register destination,
 ExternalReference reference);

 virtual void LoadFromConstantsTable(Register destination,
 int constant_index) = 0;

 // Corresponds to: destination = kRootRegister + offset.
 virtual void LoadRootRegisterOffset(Register destination,
 intptr_t offset) = 0;

The more target-specific interfaces of TurboAssembler is defined in codegen/ppc/macro-assembler.h as shown for this PPC TurboAssembler:

 void LoadP(Register dst, const MemOperand& mem, Register scratch = no_reg);
 void LoadPU(Register dst, const MemOperand& mem, Register scratch = no_reg);
 // Push caller saved registers on the stack, and return the number of bytes
 // stack pointer is adjusted.
 int PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
 Register exclusion2 = no_reg,
 Register exclusion3 = no_reg);
 // Restore caller saved registers from the stack, and return the number of
 // bytes stack pointer is adjusted.
 int PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
 Register exclusion2 = no_reg,
 Register exclusion3 = no_reg);

 // Load an object from the root table.
 void LoadRoot(Register destination, RootIndex index) override {
 LoadRoot(destination, index, al);
 }
 void LoadRoot(Register destination, RootIndex index, Condition cond);

Macro Assembler (codegen/ppc/macro-assembler-ppc.cc)

MacroAssembler is built on top of TurboAssembler to provide APIs that implement a collection of frequently used macros, as shown below.

 void CallRecordWriteStub(Register object, Register address,
 RememberedSetAction remembered_set_action,
 SaveFPRegsMode fp_mode);
 void CallRecordWriteStub(Register object, Register address,
 RememberedSetAction remembered_set_action,
 SaveFPRegsMode fp_mode, Address wasm_target);
 void CallEphemeronKeyBarrier(Register object, Register address,
 SaveFPRegsMode fp_mode);

 void MultiPush(RegList regs, Register location = sp);
 void MultiPop(RegList regs, Register location = sp);

 void MultiPushDoubles(RegList dregs, Register location = sp);
 void MultiPopDoubles(RegList dregs, Register location = sp);

Like TurboAssembler, MacroAssembler is defined in the target-specific directory, and the APIs differ from different architectures.

Porting summary

	Porting of Assembler to implement machine-specific assembly APIs (significant porting effort)

	Porting of TurboAssembler and MacroAssembler for higher-level APIs (considerable porting effort)

Compiler Backend

Defined under compiler/backend, the compiler backend deals with instruction selection, register allocation, a few other optimizations (e.g., move-optimizer), and finally, assemble codes to architecture-specific instructions.

Compiler backend can be entered through 3 different routes:

	From the compiler pipeline (compiler/pipeline.cc)

	From Ignition engine bytecode handler generation (ignition/interpreter-generator.cc)

	From V8 builtin initialization (builtins/setup-builtins-internal.cc)

The compiler-backend can be triggered by compilation pipeline (compiler/pipeline.cc) via SelectInstruction() and AssembleCode()steps as shown below.

 // Step A.1. Serialize the data needed for the compilation front-end.
 void Serialize();
 // Step A.2. Run the graph creation and initial optimization passes.
 bool CreateGraph();
 // Step B. Run the concurrent optimization passes.
 bool OptimizeGraph(Linkage* linkage);
 // Alternative step B. Run minimal concurrent optimization passes for
 // mid-tier.
 bool OptimizeGraphForMidTier(Linkage* linkage);
 // Substep B.1. Produce a scheduled graph.
 void ComputeScheduledGraph();
 // Substep B.2. Select instructions from a scheduled graph.
 bool SelectInstructions(Linkage* linkage);
 // Step C. Run the code assembly pass.
 void AssembleCode(Linkage* linkage, std::unique_ptr<AssemblerBuffer> buffer = {});
 // Step D. Run the code finalization pass.
 MaybeHandle<Code> FinalizeCode(bool retire_broker = true);

The backend can also be entered from Ignition engine through CodeAssembler::GenerateCode() invoked from GenerateBytecodeHandler() in ignition/interpreter-generator.cc as shown below:

Handle<Code> GenerateBytecodeHandler(Isolate* isolate, const char* debug_name,
 Bytecode bytecode,
 OperandScale operand_scale,
 int builtin_index,
 const AssemblerOptions& options) {
 ...
 switch (bytecode) {
#define CALL_GENERATOR(Name, ...) \
 case Bytecode::k##Name: \
 Name##Assembler::Generate(&state, operand_scale); \
 break;
 BYTECODE_LIST(CALL_GENERATOR);
#undef CALL_GENERATOR
 }
 Handle<Code> code = compiler::CodeAssembler::GenerateCode(&state, options); // trigger code generation
 ...
 return code;
}

Finally the backend can be entered from builtin initialization via SetupBuiltinsInternal() from setup-builtins-internal.cc that in turn calls CodeAssembler::GenerateCode().

Instruction Selection

The entry-point to instruction selection is InstructionSelector::SelectInstructions() as defined in compiler/backend/instruction-selector.cc. This common-path algorithm recursively traverses all the blocks (VisitBlock()) and eventually all the nodes (VisitNode()) in the TFGraph.

It is in VisitNode() that the transitioning from a common path algorithm to a target-specific instruction selector happens. As shown below, VisitNode() consists of a large switch-statement (~900 LOC) that dispatches to different VisitXXX() methods based on the IrOpcode of the incoming node.

void InstructionSelector::VisitNode(Node* node) {
 tick_counter_->DoTick();
 DCHECK_NOT_NULL(schedule()->block(node)); // should only use scheduled nodes.
 switch (node->opcode()) {
 ...
 case IrOpcode::kDelayedStringConstant:
 return MarkAsTagged(node), VisitConstant(node);
 case IrOpcode::kCall:
 return VisitCall(node);
 case IrOpcode::kDeoptimizeIf:
 return VisitDeoptimizeIf(node);
 case IrOpcode::kDeoptimizeUnless:
 return VisitDeoptimizeUnless(node);
 case IrOpcode::kTrapIf:
 return VisitTrapIf(node, TrapIdOf(node->op()));
 case IrOpcode::kTrapUnless:
 return VisitTrapUnless(node, TrapIdOf(node->op()));
 ...
 }
 ...
}

The VisitXXX() methods invoked by the common-path VisitNode() are implemented by target-specific instruction schedulers. For instance,

	compiler/backend/ppc/instruction-selector-ppc.cc implements 307 VisitXXX() methods

	compiler/backend/mips64/instruction-selector-mips64.cc implements 176 VisitXXX() methods

	compiler/backend/x64/instruction-selector-x64.cc implements 151 VisitXXX() methods

	compiler/backend/arm64/instruction-selector-arm64.cc implements 111 VisitXXX() methods

Question

	Why different targets implement different numbers of VisitXXX() methods?

Here is an example of VisitXXX() method implemented by instruction-selector-mips64.cc. Note that opcodes such as kMips64Or32 are target-specific machine-node IRs.

void InstructionSelector::VisitWord32Or(Node* node) {
 VisitBinop(this, node, kMips64Or32, true, kMips64Or32);
}

Code Generation

Code generation is triggered by invoking CodeGenerator::AssembleCode() from the compilation pipeline (as shown at the beginning of the compiler backend section).

The common-path code-generator traverses all the blocks (via CodeGenerator::AssembleBlock()) and eventually every node (via CodeGenerator::AssembleInstruction() of the incoming TFNode graph to generate machine codes. The transitioning from common-path algorithm to architecture-specific code generation is triggered by CodeGenerator::AssembleInstruction() calling CodeGenerator::AssembleArchInstruction(). The latter is implemented by architecture-specific code generators.

For instance, the following snippet is from compiler/backend/ppc/code-generator-ppc.cc. It consists a big switch statement that for each type of instr->opcode() emits a sequence of machine codes using architecture-specific TurboAssembler (note: #define __ tasm()->) that implements the semantics of the ArchOpcode.

// Assembles an instruction after register allocation, producing machine code.
CodeGenerator::CodeGenResult CodeGenerator::AssembleArchInstruction(
 Instruction* instr) {
 PPCOperandConverter i(this, instr);
 ArchOpcode opcode = ArchOpcodeField::decode(instr->opcode());

 switch (opcode) {
 case kArchCallCodeObject: {
 v8::internal::Assembler::BlockTrampolinePoolScope block_trampoline_pool(
 tasm());
 if (HasRegisterInput(instr, 0)) {
 Register reg = i.InputRegister(0);
 DCHECK_IMPLIES(
 HasCallDescriptorFlag(instr, CallDescriptor::kFixedTargetRegister),
 reg == kJavaScriptCallCodeStartRegister);
 __ CallCodeObject(reg);
 } else {
 __ Call(i.InputCode(0), RelocInfo::CODE_TARGET);
 }
 RecordCallPosition(instr);
 DCHECK_EQ(LeaveRC, i.OutputRCBit());
 frame_access_state()->ClearSPDelta();
 break;
 }
 ...
 }
 ...

CodeGenerator::AssembleArchInstruction() needs to handle all ArchOpcodes defined in compiler/backend/instruction-codes.h (~100 opcodes) and target-specific ArchOpcodes defined in compiler/backend/ppc/instruction-codes-ppc.h (~150 opcodes).

Besides CodeGenerator::AssembleArchInstruction(), there are other AssembleXXX() methods that need be ported to: AssembleArchBoolean(), AssembleArchBinarySearchSwitch(), AssembleArchLookupSwitch(), AssembleArchTableSwitch(), AssembleArchJump(), AssembleArchBranch(), AssembleDeoptBranch(), and AssembleArchTrap().

Instruction Scheduler

Instruction scheduling is happening mostly on the common path. However, if a TFGraph node uses target-specific opcodes (e.g., KPPC_xxx, then the scheduler needs to know the properties of such opcodes.InstructionScheduler::GetTargetInstructionFlags() in compiler/backend/ppc/instruction-scheduler-ppc.cc determines whether a KPPC_xxx instruction is load, store, atomic, or has a side-effect.

Register Allocator

There is no target-specific implementation for the register allocator.

Porting summary

For a new backend, need to

	Implementing all InstructionSelector::VisitXXX() methods (major porting efforts)

	Implementing all CodeGenerator::AssembleXXX() methods (major porting efforts)

	Others: InstructionScheduler::GetTargetInstructionFlags() (minimal porting efforts)

Simulator

Data structures used in V8 runtime environments such as frame, thread, isolate are defined under execution/. However, the main target-specific implementation of the execution environment is the simulator. For example, simulator for MIPS platform is defined under execution/mips64/simulator-mips64.cc. The MIPS simulator is invoked if V8 is not generating a native binary, and it will allow V8 to run and debug the MIPS binary on the host machines.

The simulator supports multiple threads (i.e., each isolate is a thread and Monitor (?)), an ICache, a lightweight debugger (MipsDebugger) that supports breakpoints, get values, and get register values,

V8 calls into generated code via the GeneratedCode wrapper, which will start execution in the simulator or forwards to the real entry on a MIPS platform.

template <typename Return, typename... Args>
class GeneratedCode {
 public:
 using Signature = Return(Args...);
 ...
#ifdef USE_SIMULATOR
 Return Call(Args... args) {
#if defined(V8_TARGET_OS_WIN) && !defined(V8_OS_WIN)
 FATAL("Generated code execution not possible during cross-compilation.");
#endif // defined(V8_TARGET_OS_WIN) && !defined(V8_OS_WIN)
 return Simulator::current(isolate_)->template Call<Return>(
 reinterpret_cast<Address>(fn_ptr_), args...);
 }
#else
 DISABLE_CFI_ICALL Return Call(Args... args) {
 // When running without a simulator we call the entry directly.
#if defined(V8_TARGET_OS_WIN) && !defined(V8_OS_WIN)
 FATAL("Generated code execution not possible during cross-compilation.");
#endif // defined(V8_TARGET_OS_WIN) && !defined(V8_OS_WIN)
#if V8_OS_AIX
 ...
#else
 return fn_ptr_(args...);
#endif // V8_OS_AIX
 }
#endif // USE_SIMULATOR

Target-specific Simulator Implementation

The entry-point to the simulator is Simulator::Call(), which is a wrapper to the target-specific implementation of Simulator::CallImpl(). Simulator::CallImpl() setup arguments and return values in registers and save/restore volatile registers, then trigger Simulator::Execute().

Simulator::Execute() executes instructions (via Simulator::InstructionDecode()) from the current PC until it reaches the end_sim_pc or at FLAG_STOP_sim_at (for debugging). The actual implementations of instruction simulation is at DecodeXXXX() functions.

// Executes the current instruction.
void Simulator::InstructionDecode(Instruction* instr) {
 if (v8::internal::FLAG_check_icache) {
 CheckICache(i_cache(), instr);
 }
 pc_modified_ = false;
 v8::internal::EmbeddedVector<char, 256> buffer;
 if (::v8::internal::FLAG_trace_sim) {
 SNPrintF(trace_buf_, "%s", "");
 disasm::NameConverter converter;
 disasm::Disassembler dasm(converter);
 dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(instr));
 }

 instr_ = instr;
 switch (instr_.InstructionType()) {
 case Instruction::kRegisterType:
 DecodeTypeRegister();
 break;
 case Instruction::kImmediateType:
 DecodeTypeImmediate();
 break;
 case Instruction::kJumpType:
 DecodeTypeJump();
 break;
 default:
 UNSUPPORTED();
 }
 if (::v8::internal::FLAG_trace_sim) {
 PrintF(" 0x%08" PRIxPTR " %-44s %s\n",
 reinterpret_cast<intptr_t>(instr), buffer.begin(),
 trace_buf_.begin());
 }
 if (!pc_modified_) {
 set_register(pc, reinterpret_cast<int32_t>(instr) + kInstrSize);
 }
}

Porting Summary

	execution/simulator-mips64.cc is a major porting effort

Builtin Functions

Implementations of V8 built-in functions are defined under builtins/. The following lists different types of builtin functions depending based on different calling conventions and where they can be called (e.g., from C++, ASM, JS, or from internal V8 components) as defined in builtin/builtins_definitions.h.

// CPP: Builtin in C++. Entered via BUILTIN_EXIT frame.
// Args: name
// TFJ: Builtin in Turbofan, with JS linkage (callable as Javascript function).
// Args: name, arguments count, explicit argument names...
// TFS: Builtin in Turbofan, with CodeStub linkage.
// Args: name, explicit argument names...
// TFC: Builtin in Turbofan, with CodeStub linkage and custom descriptor.
// Args: name, interface descriptor
// TFH: Handlers in Turbofan, with CodeStub linkage.
// Args: name, interface descriptor
// BCH: Bytecode Handlers, with bytecode dispatch linkage.
// Args: name, OperandScale, Bytecode
// ASM: Builtin in platform-dependent assembly.
// Args: name, interface descriptor

The BUILTIN_LIST_xxx macros define hundreds of built-ins, as shown below:

#define BUILTIN_LIST_BASE(CPP, TFJ, TFC, TFS, TFH, ASM) \
 /* GC write barrirer */ \
 TFC(RecordWrite, RecordWrite) \
 TFC(EphemeronKeyBarrier, EphemeronKeyBarrier) \
 \
 /* Adaptor for CPP builtin */ \
 TFC(AdaptorWithBuiltinExitFrame, CppBuiltinAdaptor)
 ...

Builtin Function Implementation

V8 built-in functions are implemented in a mostly platform-independent way. There are total 61 builtin-xxx.cc files and 98 xxx.tq source files.

There are three types of builtin implementations:

	TF_BUILTIN (i.e., Turbo-fan Builtins): builtin functions are implemented as TFNode graphs using CodeStubAssembler

	IC_BUILTIN (i.e., Inlin-caching Builtins): builtin functions implemented as TFNode graphs using AccessorAssembler (subclass of CodeStubAssembler)

	BUILTIN: builtin function that are implemented as C++ codes directly accessing objects in V8 internal representation

Note that both TF_BUILTIN and IC_BUILTIN require the TF backend to generate the final binaries of the builtins.

BUILTIN implementation

C++ builtin functions are implemented mostly using internal V8 interfaces,

// --
//
// A builtin function is defined by writing:
//
// BUILTIN(name) {
// ...
// }
//
// In the body of the builtin function the arguments can be accessed
// through the BuiltinArguments object args.
// TODO(cbruni): add global flag to check whether any tracing events have been
// enabled.
#define BUILTIN(name) \
 V8_WARN_UNUSED_RESULT static Object Builtin_Impl_##name(\
 BuiltinArguments args, Isolate* isolate); \
 \
 V8_NOINLINE static Address Builtin_Impl_Stats_##name(\
 int args_length, Address* args_object, Isolate* isolate) { \
 BuiltinArguments args(args_length, args_object); \
 RuntimeCallTimerScope timer(isolate, \
 RuntimeCallCounterId::kBuiltin_##name); \
 TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.runtime"), \
 "V8.Builtin_" #name); \
 return CONVERT_OBJECT(Builtin_Impl_##name(args, isolate)); \
 } \
 \
 V8_WARN_UNUSED_RESULT Address Builtin_##name(\
 int args_length, Address* args_object, Isolate* isolate) { \
 DCHECK(isolate->context().is_null() || isolate->context().IsContext()); \
 if (V8_UNLIKELY(TracingFlags::is_runtime_stats_enabled())) { \
 return Builtin_Impl_Stats_##name(args_length, args_object, isolate); \
 } \
 BuiltinArguments args(args_length, args_object); \
 return CONVERT_OBJECT(Builtin_Impl_##name(args, isolate)); \
 } \
 \
 V8_WARN_UNUSED_RESULT static Object Builtin_Impl_##name(\
 BuiltinArguments args, Isolate* isolate)

The following is an implementation of builtin StringPrototypeNormalize.

// ES6 section 21.1.3.12 String.prototype.normalize ([form])
//
// Simply checks the argument is valid and returns the string itself.
// If internationalization is enabled, then intl.js will override this function
// and provide the proper functionality, so this is just a fallback.
BUILTIN(StringPrototypeNormalize) {
 HandleScope handle_scope(isolate);
 TO_THIS_STRING(string, "String.prototype.normalize");

 Handle<Object> form_input = args.atOrUndefined(isolate, 1);
 if (form_input->IsUndefined(isolate)) return *string;

 Handle<String> form;
 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, form,
 Object::ToString(isolate, form_input));

 if (!(String::Equals(isolate, form, isolate->factory()->NFC_string()) ||
 String::Equals(isolate, form, isolate->factory()->NFD_string()) ||
 String::Equals(isolate, form, isolate->factory()->NFKC_string()) ||
 String::Equals(isolate, form, isolate->factory()->NFKD_string()))) {
 Handle<String> valid_forms =
 isolate->factory()->NewStringFromStaticChars("NFC, NFD, NFKC, NFKD");
 THROW_NEW_ERROR_RETURN_FAILURE(
 isolate,
 NewRangeError(MessageTemplate::kNormalizationForm, valid_forms));
 }

 return *string;
}

TF_BUILTIN and IC_BUILTIN Implementations

Both TF_BUILTIN and IC_BUILTIN are implemented as TFNode graphs constructed via (subclasses of) CodeStubAssembler API interfaces. These TFNode graphs will be eventually compiled to platform-specific codes by the TF backend.

The following snippet is from builtin/builtins-intl-gen.cc where IntlBuiltinsAssembler is a subclass of CodeStubAssembler and methods such as GotoIf() or GotoIfNot() are defined by CodeStubAssembler.

TF_BUILTIN(StringToLowerCaseIntl, IntlBuiltinsAssembler) {
 const TNode<String> string = CAST(Parameter(Descriptor::kString));

 Label call_c(this), return_string(this), runtime(this, Label::kDeferred);

 // Early exit on empty strings.
 const TNode<Uint32T> length = LoadStringLengthAsWord32(string);
 GotoIf(Word32Equal(length, Uint32Constant(0)), &return_string);

 // Unpack strings if possible, and bail to runtime unless we get a one-byte
 // flat string.
 ToDirectStringAssembler to_direct(
 state(), string, ToDirectStringAssembler::kDontUnpackSlicedStrings);
 to_direct.TryToDirect(&runtime);

 const TNode<Int32T> instance_type = to_direct.instance_type();
 CSA_ASSERT(this,
 Word32BinaryNot(IsIndirectStringInstanceType(instance_type)));
 GotoIfNot(IsOneByteStringInstanceType(instance_type), &runtime);
 ...

Some built-in functions are implemented in xxx.tq files (98 files). These built-in functions are written in a DSL called Torque, which will be compiled into C++ codes using the CSA interfaces by the Torque compiler. Torque provides a higher-level abstraction to enable easier developments of builtin functions w/ more rigorous checking.

ASM Builtin Functions

ASM builtin functions are implemented in target-specific ASMs. They are generated using Builtins::Generate_XXX() defined under target-specific directories. For instance, JSEntry() is an ASM builtin function and it is generated via ppc/Builtins::Generate_JSEntry().

For each target backend, 41 Builtins::Generated_xxx() methods must be implemented, e.g,:

void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address) {
void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) {
...

Note that the above Builtins::Generate_XXX() methods generate target-specific code via MacroAssembler APIs. The following example is taken from builtin/ppc/builtins-ppc.cc:

#define __ ACCESS_MASM(masm)

void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address) {
 __ Move(kJavaScriptCallExtraArg1Register, ExternalReference::Create(address));
 __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithBuiltinExitFrame),
 RelocInfo::CODE_TARGET);
}

Initialization of Builtin Functions

The startup of V8 VM initializes many of the built-in functions. When snapshotis not used, Genesis::InitializeGlobal() in init/bootstrapper.cc installs many basic builtins like valueOf, toString. This function explicitly initializes the necessary built-ins one by one. The following shows snippets of such initialization using SimpleInstallFunction().

{ // --- O b j e c t ---
 Handle<String> object_name = factory->Object_string();
 Handle<JSFunction> object_function = isolate_->object_function();
 JSObject::AddProperty(isolate_, global_object, object_name, object_function,
 DONT_ENUM);

 SimpleInstallFunction(isolate_, object_function, "assign",
 Builtins::kObjectAssign, 2, false);
 SimpleInstallFunction(isolate_, object_function, "getOwnPropertyDescriptor",
 Builtins::kObjectGetOwnPropertyDescriptor, 2, false);
 ...

Observation

	To run even a simplest JS code, the new V8 backend still needs to compile all builtin functions used at the V8 startup, thus would require relatively complete support for the new backend (especially platform-specific parts of codegen/, compiler/backend/, builtin/, and execution/.

Porting Summary

Each backend must implement the following 41 APIs:

void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address) {
void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) {
void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) {
void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) {
void Builtins::Generate_JSEntry(MacroAssembler* masm) {
void Builtins::Generate_JSConstructEntry(MacroAssembler* masm) {
void Builtins::Generate_JSRunMicrotasksEntry(MacroAssembler* masm) {
void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
void Builtins::Generate_RunMicrotasksTrampoline(MacroAssembler* masm) {
void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) {
void Builtins::Generate_InterpreterPushArgsThenCallImpl(
void Builtins::Generate_InterpreterPushArgsThenConstructImpl(
void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) {
void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) {
void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) {
void Builtins::Generate_ContinueToCodeStubBuiltinWithResult(
void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) {
void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult(
void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) {
void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) {
void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) {
void Builtins::Generate_ReflectApply(MacroAssembler* masm) {
void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) {
void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm,
void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm,
void Builtins::Generate_CallFunction(MacroAssembler* masm,
void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) {
void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) {
void Builtins::Generate_ConstructFunction(MacroAssembler* masm) {
void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) {
void Builtins::Generate_Construct(MacroAssembler* masm) {
void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) {
void Builtins::Generate_CEntry(MacroAssembler* masm, int result_size,
void Builtins::Generate_DoubleToI(MacroAssembler* masm) {
void Builtins::Generate_CallApiCallback(MacroAssembler* masm) {
void Builtins::Generate_CallApiGetter(MacroAssembler* masm) {
void Builtins::Generate_DirectCEntry(MacroAssembler* masm) {

WASM

WebAssembly can be executed by the WASM interpreter (implemented in wasm/wasm-interpreter.cc) or compiled and executed as binaries by the liftoff compiler.

WASM Interpreter

Since WASM bytecode is statically typed, the implementation of each bytecode (wasm/wasm-opcodes.h) either through the interpreter or by compilation is quite straightforward.

WASM interpreter implements WASM bytecodes in C, so no porting is required.

#define FOREACH_SIMPLE_BINOP(V) \
 V(I32Add, uint32_t, +) \
 V(I32Sub, uint32_t, -) \
 V(I32Mul, uint32_t, *) \
 ...

#define EXECUTE_SIMPLE_BINOP(name, ctype, op) \
 case kExpr##name: { \
 WasmValue rval = Pop(); \
 WasmValue lval = Pop(); \
 auto result = lval.to<ctype>() op rval.to<ctype>(); \
 possible_nondeterminism_ |= has_nondeterminism(result); \
 Push(WasmValue(result)); \
 break; \
 }
 FOREACH_SIMPLE_BINOP(EXECUTE_SIMPLE_BINOP)
#undef EXECUTE_SIMPLE_BINOP

Liftoff Compiler

WASM codes can also be compiled into binary through liftoff compiler via ExecuteLiftoffCompilation() in wasm/baseline/liftoff-compiler.cc. The compilation seems to go through each function, statement, operation via FullDecoder that invokes the LifoffAssembler APIs to emit target-specific instructions to the instruction buffer.

The following code snippet shows the code-gen for a WASM opcode kExprI64Popcnt. Here __ refers to LiftoffAssembler, and __ emit_xxx(...) functions generate target-specific binaries to the instruction buffer.

 case kExprI64Popcnt:
 EmitUnOp<kWasmI64, kWasmI64>(
 [=](LiftoffRegister dst, LiftoffRegister src) {
 if (__ emit_i64_popcnt(dst, src)) return;
 // The c function returns i32. We will zero-extend later.
 ValueType sig_i_l_reps[] = {kWasmI32, kWasmI64};
 FunctionSig sig_i_l(1, 1, sig_i_l_reps);
 LiftoffRegister c_call_dst = kNeedI64RegPair ? dst.low() : dst;
 GenerateCCall(&c_call_dst, &sig_i_l, kWasmStmt, &src,
 ExternalReference::wasm_word64_popcnt());
 // Now zero-extend the result to i64.
 __ emit_type_conversion(kExprI64UConvertI32, dst, c_call_dst,
 nullptr);
 });
 break;

The only platform-specific part of Lifoff compiler is wasm/baseline/mips64/liftoff-assembler-mips64.cc, which implements Liftoff assembler APIs using target-specific TurboAssembler APIs. For instance, the follow snippets implements LiftoffAssembler::emit_type_conversion() using TurboAssembler APIs.

bool LiftoffAssembler::emit_type_conversion(WasmOpcode opcode,
 LiftoffRegister dst,
 LiftoffRegister src, Label* trap) {
 switch (opcode) {
 case kExprI32ConvertI64:
 TurboAssembler::Ext(dst.gp(), src.gp(), 0, 32);
 return true;
 case kExprI32SConvertF32: {
 LiftoffRegister rounded =
 GetUnusedRegister(kFpReg, LiftoffRegList::ForRegs(src));
 LiftoffRegister converted_back =
 GetUnusedRegister(kFpReg, LiftoffRegList::ForRegs(src, rounded));
 ...

In some cases, a LiftoffAssembler API is implemented via target-specific CodeAssembler APIs, as shown below:

#define I32_BINOP(name, instruction) \
 void LiftoffAssembler::emit_i32_##name(Register dst, Register lhs, \
 Register rhs) { \
 instruction(dst, lhs, rhs); \
 }

// clang-format off
I32_BINOP(add, addu)
I32_BINOP(sub, subu)
I32_BINOP(and, and_)
I32_BINOP(or, or_)
I32_BINOP(xor, xor_)
// clang-format on

Porting Summary

	WASM interpreter requires no porting

	Liftoff Assembler (i.e., liftoff_assembler_mips64.h requires very little porting because the assembler interfaces are implemented using TurboAssembler APIs and a few simple CodeAssembler APIs. Since we have implemented MIPS64 TurboAssembler APIs and a subset of CodeAssembler APIs using RISCV instructions for the JS engine anyway, very few additional porting is necessary.

Other V8 Internals

MIPS64 Register Usage Convention

See Registers [https://github.com/riscv/v8/wiki/Registers/]

Calling Convention

A calling convention specifies how functions receive arguments from their callers and how to return results. In this section, we are concerned with calling conventions for callee functions whose binaries are generated by V8.

There are several ways to invoke a V8 generated code:

	Callee: JS functions (compiled by V8), invoked through Execution::Call/CallBuiltin/New/TryCall/...();

	Callee: WASM functions (compiled by V8), invoked through Execution::CallWasm;

	Callee: any V8 compiled code wrapped in GeneratedCode<...> (JS/WASM functions, V8 internal functions, Codes generated by directly invoking MacroAssembler APIs from C codes), invoked through GeneratedCode<...>.Call(...) ; Caller: simulator or direct native code execution

GeneratedCode<...>.Call via C varargs calling convention

All V8 generated codes (incl., JS, and WASM functions generated by V8 or codes constructed by directly invoking macro-assembler as in cctest/test-assembly-xxx.cc) are wrapped in generic GeneratedCode<...> objects (as defined in execution/simulator.h). And invoking any V8 generated codes always involves GeneratedCode<...>.Call(...).

The Call() interface is a simple wrapper to dispatch between simulated execution and native execution as shown below:

#ifdef USE_SIMULATOR
 // Defined in simulator-base.h.
 Return Call(Args... args) {
 return Simulator::current(isolate_)->template Call<Return>(
 reinterpret_cast<Address>(fn_ptr_), args...);
 }
#else
 DISABLE_CFI_ICALL Return Call(Args... args) {
 ...
 // When running without a simulator we call the entry directly.
 return fn_ptr_(args...);
 }
#endif // USE_SIMULATOR

Native Call Setup

In the non-simulator mode, the interface directly invokes the generated code as a native function, i.e., fn_ptr_(args...). Since fn_ptr_(args...) is invoked from C, it means that GeneratedCode<...>.Call(...) follows C varargs function calling convention on the target machine.

For instance, on MIPS, the callee expects that arguments are passed in a0, …, a7 first w/ the rest spilled onto the stack, and it passes the result back to v0.

Simulated Execution via Simulator::CallImpl()

When a generated coded is invoked via GeneratedCode<...>.Call(...), under the simulator mode, it gets dispatched to Simulator::CallImpl, defined as follows:

intptr_t Simulator::CallImpl(Address entry, int argument_count, const intptr_t* arguments)

Note that the native execution and simulated execution must follow the same calling convention when invoking GeneratedCode.
Since GeneratedCode uses C’s vararg calling convention on target machine, the simulated path must follow the same convention of arguments and result passing as shown below:

 // First four arguments passed in registers in both ABI's.
 int reg_arg_count = std::min(kRegisterPassedArguments, argument_count);
 if (reg_arg_count > 0) set_register(a0, arguments[0]);
 if (reg_arg_count > 1) set_register(a1, arguments[1]);
 if (reg_arg_count > 2) set_register(a2, arguments[2]);
 if (reg_arg_count > 3) set_register(a3, arguments[3]);

 // Up to eight arguments passed in registers in N64 ABI.
 // TODO(plind): N64 ABI calls these regs a4 - a7. Clarify this.
 if (reg_arg_count > 4) set_register(a4, arguments[4]);
 if (reg_arg_count > 5) set_register(a5, arguments[5]);
 if (reg_arg_count > 6) set_register(a6, arguments[6]);
 if (reg_arg_count > 7) set_register(a7, arguments[7]);

Simulator::CallImpl() invokes Simulator::CallInternal(). The latter is mainly for checking whether callee-saved-registers are preserved during the simulated execution of entry. Note that callee-saved registers should be preserved by the callee. So I think the register handlings in Simulator::CallInternal() is probably for checking and debugging purposes.

Calling JS Functions

Invoking a JSFunction involves a sequence of builtin functions: JSEntry builtin -> JSEntryTrampoline builtin -> CallFunction builtin -> compiled JS codes.

When invoking a JS function, the following needs to be set up or passed into the callee function in certain registers:

	A root register (defined as kRootRegister) points to a sub-region of the Isolate object of the current execution environment. It can be used to access isolate-specific data such as roots, external references, builtins, etc.;

	A context register (defined as cp) that points to the current context of the execution environment (some times may need to create a new script context);

	The receiver object (could be `NULL);

	The starting binary address of a non-constructor callee function (i.e., target);

	The starting binary address of a constructor (w/ new) callee function (i.e., new_target);

	Argument lists;

	Setup JS frame for the callee;

	Exception handling: prepare meta-info needed for exception handling, and checking for exception between and after invoking the code

Platform-independent Invoke(...) Helper

The entry-point to invoke a JS or builtin function is via the helper function Invoke() (defined in execution/execution.cc).

V8_WARN_UNUSED_RESULT MaybeHandle<Object> Invoke(Isolate* isolate, const InvokeParams& params);

where Invoke() is used to implement pretty much every times of JS calls, e.g., Execution::Call(), Execution::CallBuiltin(), Execution::New(), Execution::TryCall(), Execution::TryRunMicrotasks().

Invoke() consists of the following steps:

	Fastpath for Builtins::InvokeApiFunction()

	setup script context (if needed be)

	Check for exception and callbacks

	Invoke built-in function JSEntry through GeneratedCode<...>.Call(...) interface:

Handle<Code> code = JSEntry(isolate, params.execution_target, params.is_construct);
{
 // Save and restore context around invocation and block the
 // allocation of handles without explicit handle scopes.
 ...
 if (params.execution_target == Execution::Target::kCallable) {
 // {new_target}, {target}, {receiver}, return value: tagged pointers
 // {argv}: pointer to array of tagged pointers
 using JSEntryFunction = GeneratedCode<Address(
 Address root_register_value, Address new_target, Address target,
 Address receiver, intptr_t argc, Address** argv)>;
 JSEntryFunction stub_entry = JSEntryFunction::FromAddress(isolate, code->InstructionStart());

 Address orig_func = params.new_target->ptr();
 Address func = params.target->ptr();
 Address recv = params.receiver->ptr();
 Address** argv = reinterpret_cast<Address**>(params.argv);
 RuntimeCallTimerScope timer(isolate, RuntimeCallCounterId::kJS_Execution);
 value = Object(stub_entry.Call(isolate->isolate_data()->isolate_root(),
 orig_func, func, recv, params.argc, argv));
 } else {
 // return value: tagged pointers
 // {microtask_queue}: pointer to a C++ object
 using JSEntryFunction = GeneratedCode<Address(Address root_register_value, MicrotaskQueue* microtask_queue)>;
 JSEntryFunction stub_entry = JSEntryFunction::FromAddress(isolate, code->InstructionStart());
 value = Object(stub_entry.Call(isolate->isolate_data()->isolate_root(), params.microtask_queue));
 }
}

Target-specific: JSEntry() Builtin

All JS codes are invoked through JSEntry variant builtins (i.e., JSEntry, JSConstructorEntry, JSRunMicrotasksEntry), as shown in the implementation of Invoke(). Acode object called JSEntry is created that is eventually is used in GeneratedCode<...>.Call(...)):

Handle<Code> code = JSEntry(isolate, params.execution_target, params.is_construct);

where JSEntry is defined as follows

Handle<Code> JSEntry(Isolate* isolate, Execution::Target execution_target,
 bool is_construct) {
 if (is_construct) {
 return BUILTIN_CODE(isolate, JSConstructEntry);
 } else if (execution_target == Execution::Target::kCallable) {
 return BUILTIN_CODE(isolate, JSEntry);
 } else if (execution_target == Execution::Target::kRunMicrotasks) {
 return BUILTIN_CODE(isolate, JSRunMicrotasksEntry);
 }
 UNREACHABLE();
}

The JSEntry() has the following prototype:

// Called with the native C calling convention. The corresponding function
// signature is either:
//
// using JSEntryFunction = GeneratedCode<Address(
// Address root_register_value, Address new_target, Address target,
// Address receiver, intptr_t argc, Address** args)>;
// or
// using JSEntryFunction = GeneratedCode<Address(
// Address root_register_value, MicrotaskQueue* microtask_queue)>;

The JSEntry() binary expects arguments are passed in to argument registers of MIPS64 (i.e., a0 - a5) as follows:

 // Registers:
 // either
 // a0: root register value
 // a1: entry address
 // a2: function
 // a3: receiver
 // a4: argc
 // a5: argv
 // or
 // a0: root register value
 // a1: microtask_queue
 //
 // Stack:
 // 0 arg slots on mips64 (4 args slots on mips)

As shown in Builtins::Generate_JSEntryVariant(), the builtin function implements common target-specific (i.e., those involving machine registers) callee-side handling:

	save callee saved registers on the stack

 // Save callee saved registers on the stack.
 __ MultiPush(kCalleeSaved | ra.bit());
 // Save callee-saved FPU registers.
 __ MultiPushFPU(kCalleeSavedFPU);

	move a0 to kRootRegister ()

	build an EntryFrame

	set js_entry_sp value (if it is outermost JS call)

	setup for exception handling

	invoke JSEntryTrampoline() builtin

 // Invoke the function by calling through JS entry trampoline builtin and
 // pop the faked function when we return.
 Handle<Code> trampoline_code = masm->isolate()->builtins()->builtin_handle(entry_trampoline);
 __ Call(trampoline_code, RelocInfo::CODE_TARGET);

Note that JSEntryTrampoline() is “inovoked” via __ Call(trampoline_code,...) (where Call is defined in TurboAssembler as a couple of branch-and-link instructions). Unlike invoking through C function calls, there is no additional caller-side prologue and epilogue handling. In fact, kRootRegister and argument registers such as a1-a5 are preserved (or passed) from JSEntry to JSEntryTrampoline.

	restore the frame and callee-saved registers

Target-specific: JSEntryTrampoline() builtin

JSEntryTrampline() performs more setups for JS function calls according to JS calling convention. These trampolines are generated via Builtins::Generate_JSEntryTrampolineHelper (in builtins/mips64/builtins-mips64.cc).

Since JSEntryTrampoline() was “invoked” by JSEntry() by a couple of branch-and-link instructions (generated by TurboAssembler::Call()) instead of via a C function call. We have to deduce the states being passed from JSEntry() to JSEntryTrampoline():

 // ----------- S t a t e -------------
 // -- a0: root_register_value (unused)
 // -- a1: new.target
 // -- a2: function
 // -- a3: receiver_pointer
 // -- [fp + kPushedStackSpace + 0 * kPointerSize]: argc
 // -- [fp + kPushedStackSpace + 1 * kPointerSize]: argv
 // -----------------------------------

JSEntryTrampoline() performs the following actions:

	Set up JS context register cp, re-arrange the order of a0, a1, a3 (for later call to CallFunction() builtin)

	Push all arguments on the JS stack through sp

	Initialize all JS callee-saved registers (since they will be seen by the GC as part of handlers)

 __ LoadRoot(a4, RootIndex::kUndefinedValue);
 __ mov(a5, a4);
 __ mov(s1, a4);
 __ mov(s2, a4);
 __ mov(s3, a4);
 __ mov(s4, a4);
 __ mov(s5, a4);

	“Invoke” CallFunction builtin variant kCallFunction_ReceiverIsAny (Note: there are other flavors of CallFunction such as kCallFunction_ReceiverIsNullOrUndefined or kCallFunction_ReceiverIsNotNullOrUndefined).

// a0: argc
// a1: function
// a3: new.target
Handle<Code> builtin = is_construct ? BUILTIN_CODE(masm->isolate(), Construct) : masm->isolate()->builtins()->Call();
__ Call(builtin, RelocInfo::CODE_TARGET);

Target-specific: CallFunction() Builtins

CallFunction() Builtin is generated by Builtins::Generate_CallFunction(). It does the final preparation for a JS call following JS calling convention.

Similar to JSTrampoline(), CallFunction() is “invoked” by a couple of branch-and-link instructions (generated by TurboAssembler::Call() instead of via a C function call. Therefore, we must deduce the states passed into CallFunction().

 // ----------- S t a t e -------------
 // -- a0 : the number of arguments (not including the receiver)
 // -- a1 : the function to call (checked to be a JSFunction)
 // -----------------------------------

Note that:

	Besides a0 and a1, kRootRegister, cp (context register), sp (stack register) are probably still valid

	And arguments have been pushed to the JS frame (see JSEntryTrampoline() description above)

CallFunction() performs the following JS-specific setups:

	Check that the JS function is not a constructor (which requires a different interface)

	Enter the context of the function. ToObject has to run in the function context, and we need to the global proxy from the function context in case of conversion

	Invoke the JS function (i.e., a1)

// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a1 : the function to call (checked to be a JSFunction)
// -- a2 : the shared function info.
// -- cp : the function context.
// -----------------------------------
__ Lhu(a2,
 FieldMemOperand(a2, SharedFunctionInfo::kFormalParameterCountOffset));
__ InvokeFunctionCode(a1, no_reg, a2, a0, JUMP_FUNCTION);

	Error handling if JSFunction is a constructor

Calling a JS function to be Interpreted

As defined in builtins/mips64/builtins-mips64.cc, Builtins::Generate_InterpreterEntryTrampoline() generates codes for entering a JS function with the interpreter.

// Generate code for entering a JS function with the interpreter.
// On entry to the function the receiver and arguments have been pushed on the
// stack left to right. The actual argument count matches the formal parameter
// count expected by the function.
//
// The live registers are:
// o a1: the JS function object being called.
// o a3: the incoming new target or generator object
// o cp: our context
// o fp: the caller's frame pointer
// o sp: stack pointer
// o ra: return address
//
// The function builds an interpreter frame. See InterpreterFrameConstants in
// frames.h for its layout.
void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm)

Calling WASM Functions: Execution::CallWasm()

(TO BE ADDED)

Linkage

Internal Linkage Data Structures

In compiler/linkage.cc and compiler/linkage.h, V8 defines several linkage data structures such as

	class LinkageLocation: describes the location for a parameter or a return value to a call

	class CallDescriptor: describes a call to various parts of the compiler (e.g., compiler, codegen, . Every call has the notion of a “target” which is the first input to the call, e.g.,

enum Kind {
 kCallCodeObject, // target is a Code object
 kCallJSFunction, // target is a JSFunction object
 kCallAddress, // target is a machine pointer (a C function call)
 kCallWasmCapiFunction, // target is a Wasm C API function
 kCallWasmFunction, // target is a wasm function
 kCallWasmImportWrapper, // target is a wasm import wrapper
 kCallBuiltinPointer, // target is a builtin pointer
};

Can see an example of using CallDescriptor in CodeGenerator::AssembleConstructFrame() and CodeGenerator::AssembleReturn() in compiler/backend/mips64/code-generator-mips64.cc.

	class Linkage: it describes 4 different call prototypes, i.e., CodeStub, JS, Runtime, BytecodeDispatch

// Defines the linkage for a compilation, including the calling conventions
// for incoming parameters and return value(s) as well as the outgoing calling
// convention for any kind of call. Linkage is generally architecture-specific.
//
// Can be used to translate {arg_index} (i.e. index of the call node input) as
// well as {param_index} (i.e. as stored in parameter nodes) into an operator
// representing the architecture-specific location. The following call node
// layouts are supported (where {n} is the number of value inputs):
//
// #0 #1 #2 [...] #n
// Call[CodeStub] code, arg 1, arg 2, [...], context
// Call[JSFunction] function, rcvr, arg 1, [...], new, #arg, context
// Call[Runtime] CEntry, arg 1, arg 2, [...], fun, #arg, context
// Call[BytecodeDispatch] address, arg 1, arg 2, [...]

	compiler/c-linkage.cc defines target-specific configuration for C calling convention. For instance,

#elif V8_TARGET_ARCH_MIPS64
 // ===
 // == mips64 ===
 // ===
 #define PARAM_REGISTERS a0, a1, a2, a3, a4, a5, a6, a7
 #define CALLEE_SAVE_REGISTERS \
 s0.bit() | s1.bit() | s2.bit() | s3.bit() | s4.bit() | s5.bit() | s6.bit() | s7.bit()
 #define CALLEE_SAVE_FP_REGISTERS \
 f20.bit() | f22.bit() | f24.bit() | f26.bit() | f28.bit() | f30.bit()
#elif V8_TARGET_ARCH_PPC64

Linkage classes are mostly used in the platform-independent part of V8 (e.g., TF graph generation).

Builtin Functions Built w/ Different Linkage Conventions

As defined in init/setup-builtins-internal.cc, builtin functions w/ different linkage are built differently. For instance,

	JS linkage expects argc_with_recv as arguments (see CodeAssemblerState)

// Builder for builtins implemented in TurboFan with JS linkage.
Code BuildWithCodeStubAssemblerJS(Isolate* isolate, int32_t builtin_index,
 CodeAssemblerGenerator generator, int argc,
 const char* name) {
 ...
 compiler::CodeAssemblerState state(
 isolate, &zone, argc_with_recv, Code::BUILTIN, name,
 PoisoningMitigationLevel::kDontPoison, builtin_index);
 generator(&state);
 Handle<Code> code = compiler::CodeAssembler::GenerateCode(
 &state, BuiltinAssemblerOptions(isolate, builtin_index));
 return *code;
}

	For CallStub linkage expects CallInterfaceDescriptor as arguments (see CodeAssemblerState)

// Builder for builtins implemented in TurboFan with CallStub linkage.
Code BuildWithCodeStubAssemblerCS(Isolate* isolate, int32_t builtin_index,
 CodeAssemblerGenerator generator,
 CallDescriptors::Key interface_descriptor,
 const char* name) {
 ...
 // The interface descriptor with the given key must be initialized at this point
 // and this construction just query the details from the descriptors table.
 CallInterfaceDescriptor descriptor(interface_descriptor);
 // Ensure descriptor is already initialized.
 DCHECK_LE(0, descriptor.GetRegisterParameterCount());
 compiler::CodeAssemblerState state(
 isolate, &zone, descriptor, Code::BUILTIN, name,
 PoisoningMitigationLevel::kDontPoison, builtin_index);
 generator(&state);
 Handle<Code> code = compiler::CodeAssembler::GenerateCode(
 &state, BuiltinAssemblerOptions(isolate, builtin_index));
 return *code;
}

	For Bytecode dispatch linkage, expects InterpreterDispatchDescriptor (as defined in interpreter/interpreter-generator.cc)

Handle<Code> GenerateBytecodeHandler(Isolate* isolate, const char* debug_name,
 Bytecode bytecode,
 OperandScale operand_scale,
 int builtin_index,
 const AssemblerOptions& options) {
 Zone zone(isolate->allocator(), ZONE_NAME);
 compiler::CodeAssemblerState state(
 isolate, &zone, InterpreterDispatchDescriptor{}, Code::BYTECODE_HANDLER,
 debug_name,
 FLAG_untrusted_code_mitigations
 ? PoisoningMitigationLevel::kPoisonCriticalOnly
 : PoisoningMitigationLevel::kDontPoison,
 builtin_index);
 ...
 Handle<Code> code = compiler::CodeAssembler::GenerateCode(&state, options);

 Now that our port is upstream, we need to modify our workflow to stay in sync with the upstream changes and streamline our work in this repository. The following is the initial proposal for this workflow. It is a work in progress and feedback, discussion, and changes are encouraged.

Branches

	master: Automatically kept in sync with upstream master

	riscv64: Latest version of upstream that passes all RISC-V tests

	If all tests pass on master, then sync riscv64 with master automatically

	If any tests fail, do not merge master into riscv64; instead open issues for any failures

	other: Other development branches in progress

Developer Workflow

As all changes will need to be merged upstream, all development branch ultimately need to be based on master. However, since there may occasionally be an active bug in master, such that the RISC-V tests do not pass, normal development branches should be based off of riscv64 instead, in order to continue to make progress while someone else fixes the bug in master. In that case, the bug in master will need to be fixed and the development branch will have to be rebased before opening the upstream review.

Once a development branch is ready for review, the developer should open a pull request in this repository, with the riscv64 branch as the target. Reviewers can review the code, and make comments and suggest changes in this pull request, however, the pull request should not be merged. Instead, once a pull request has been approved by another v8-riscv member and the CI jobs have passed, then the developer should open an upstream review for those changes. Remember that this upstream review can only occur once any upstream changes have been resolved, and master == riscv64 and the development branch is rebased on top of the fix.

The simplified summary of this workflow is:

	Create a development branch based on riscv64

	Make whatever changes in the development branch

	Open a pull request in the v8-riscv GitHub repo with riscv64 as the target

	Get an approval from one or more v8-riscv members

	Pass CI tests

	If riscv64 != master, wait for bugs on master to be resolved, then rebase development branch

	Open upstream review

The slightly modified workflow for when a developer is fixing a problem in master which causes an error in RISC-V:

	Create a development branch based on master

	Make whatever changes in the development branch

	Open a pull request in the v8-riscv GitHub repo with master as the target

	Get an approval from one or more v8-riscv members

	Pass CI tests

	Open upstream review

Note that in this workflow, we never make changes directly to the master or riscv64 branches. Changes to those only come from upstream. riscv64 is always a subset of master: the last version working for RISC-V.

Automation

To stay in sync with upstream, and to implement the workflow described above, we need to automate several steps.

	Automatically sync master with upstream

	The tool should synchronize as often as possible, with just enough time to run our tests in between

	When the testing fails, automatically open a new issue, specifying the failure and the upstream commit that caused it

	If the tests pass, update the riscv64 branch

The GitHub branch protection settings should be updated to allow only this tool to push to the master and riscv64 branches to ensure that we do not accidentally make changes to those branches.

Upstreaming is complete. Below is left for reference

Our work on porting V8 to RISC-V is intended to be upstreamed to the core project [https://github.com/v8/v8]. This page outlines the progress in making that happen.

We need to follow the guidelines laid out in Contributing to V8 [https://v8.dev/docs/contribute].

	[x] We have been communicating with team members from Google about this porting work. They are supportive of our work and eager to get it upstream.

	[x] All contributors to our repository have signed the Google Individual Contributor License Agreement [https://cla.developers.google.com/about/google-individual]

	[x] The presubmit script, git cl presubmit, runs successfully for our branch

	It seems this tool was not running completely before

	I have run it correctly now and resolved most issues in #301, which is pending review now merged

	Issues #299 and #300 must also be resolved; UPDATE: resolved

	[x] The full set of tests [https://v8.dev/docs/test] have been run on all other required architectures

	[x] Rebase to the latest tip of branch (in progress, ported as of Oct 14, working through remaining issues)

	[x] Add all contributors to AUTHORS (see #302)

	[x] Upload to V8’s code review tool [https://v8.dev/docs/contribute#upload-to-v8%E2%80%99s-codereview-tool]

Related issues

Outstanding issues

Resolved issues

	#287 [https://github.com/riscv/v8/issues/287]: Check failed: expect == mt.Call() (2 vs. 0)

	Fixed

	#288 [https://github.com/riscv/v8/issues/288]: Fatal error in ../../src/objects/tagged-impl.h, line 92

	Fails on MIPS also; skipped for now

	#289 [https://github.com/riscv/v8/issues/289]: RuntimeError: unreachable

	Fixed

	#290 [https://github.com/riscv/v8/issues/290]: Seg fault

	Fails on MIPS also; skipped for now

	#302 [https://github.com/riscv/v8/issues/302]: AUTHORS file

	Fixed

	#299 [https://github.com/riscv/v8/issues/299]: cfenv is unapproved

	Fixed

	#300 [https://github.com/riscv/v8/issues/300]: Spike license

	Fixed

Information

The significant change since the last rebase that caused the many bugs that showed up from this rebase effort were caused by changes to the standard frame, specifically, adding the argument count to the frame, and reversing the order of the arguments / receiver.

Our changes have now been pushed upstream for review - https://chromium-review.googlesource.com/c/v8/v8/+/2571344

Locally, we will now have two branches:

	riscv64 [https://github.com/riscv/v8/tree/riscv64] - our main branch

	upstream [https://github.com/riscv/v8/tree/upstream] - same as riscv64 but with some files removed that should not go upstream (e.g. .github/*)

	Before pushing, we should always remove those files (see 5f65c851 [https://github.com/riscv/v8/commit/5f65c8515add6f202f55cdd1397e37e70b726a89])

	Preferred command sequence:

git checkout riscv64
git pull
git checkout upstream
git rebase riscv64
git push -f -u origin upstream

	To perform the presubmit checks, use:

git cl presubmit

	To push upstream, use:

git branch -u upstream/master
git cl upload

	To verify that the upstream branch is associated with the correct issue, use:

gi cl issue

	Similarly, to associate it with the correct issue, use:

git cl issue 1234

Upstream Issues

	Issue 10991: Landing RISC-V in the V8 tree [https://bugs.chromium.org/p/v8/issues/detail?id=10991]

	Issue 1138584: Depot tools support for linux-riscv64 compile [https://bugs.chromium.org/p/chromium/issues/detail?id=1138584#c1]

 Git [https://git-scm.com/] is our preferred version control system for all projects. It provides all of the functionality we need for tracking changes, branching and merging, and distributed development. This document will cover the basics and often used commands/sequences. For details, please see the [https://git-scm.com/doc] many [https://try.github.io/] excellent [https://en.wikipedia.org/wiki/Git] resources [https://www.atlassian.com/git/tutorials] on [https://www.tutorialspoint.com/git/index.htm] the [https://git-scm.com/docs/gittutorial] web [https://www.google.com/search?q=git+tutorial].

Initial Setup

First, you will want to tell git your name and email. These will be used to identify you in your commit messages, and to match your commits to your GitLab user.

git config --global user.email "your.name@futurewei.com"
git config --global user.name "Your Name"

If you need to use a different name/email for a specific project, you can run these commands within that repository, omitting the --global flag, and it will be used only for that project.

Cloning a Repository

Git is a distributed source code management tool, but for our projects, the master always lives on GitLab. When you begin workign on a project, you will first clone its repository from GitLab. From the project’s front page, find the “Clone” button and click it to reveal the URLs for this project. Click the button to copy the SSH URL.

[image: software/v8.wiki/uploads/git1.png]gitlab screenshot

Paste this URL into the git clone command:

git clone ssh://git@ssh-gitlab.futurewei.com:30022/swlab/swe/v8.git

Branches

Every project has a default branch and many other branches. The default branch is the master that all changes get merged into. For this project, the default branch is riscv-porting-dev. It should always be protected from directly committing to it. Instead, you need to make your changes on a new branch, then submit a merge request to have your branch merged into this master branch.

To switch to an existing branch, use:

git checkout branch-name

To create a new branch, you will first want to make sure you have the latest version of the default branch:

git checkout riscv-porting-dev
git pull

Now that you are at the correct starting point, create a new branch using:

git checkout -b my-new-branch

The name my-new-branch should be short, yet descriptive of the purpose of the branch. If it is related to an issue (which it usually should be), start the name with the issue number, for example, 123-floating-point-regs.

Making Changes

Now that you have created your branch, you can start making changes. Changes get committed into the repository, with an associated commit message. Try to keep each commit limited to a logical set of changes. When you are ready to commit a set of changes, there are two steps.

Staging

First, we will “stage” the changes. I prefer to stage using the interactive command:

git add -p

This command shows you each chunk of changes, and gives you the option to either stage it (y) or skip it (n). This process allows you to review each change to ensure you did not leave unintended code (old commented out code, debug prints, etc.) in the source.

If you have made a large number of changes and are confident in the contents, you can also just use:

git add path/to/file

To stage all changes in a file or directory, without reviewing them.

Committing

Once your changes are staged, you can now commit them.

git commit

This command will bring up an editor to write the commit message. To change the editor, set your EDITOR environment variable:

export EDITOR=vim

You may want to add the above export to your ~/.bashrc file.

The commit message should follow a particular format to make it easy to read and understand when someone reviews it in the future. The article, “How to Write a Git Commit Message” [https://chris.beams.io/posts/git-commit/] does a great job of explaining how and why to write a good message. The key points are:

	Separate subject from body with a blank line

	Limit the subject line to 50 characters

	Capitalize the subject line

	Do not end the subject line with a period

	Use the imperative mood in the subject line

	Wrap the body at 72 characters

	Use the body to explain what and why vs. how

Many editors will have plugins or settings to help you with the formatting of these messages.

If your commit is related to or closes an issue, be sure to include a line like this at the end of your message, and GitHub will automatically link it with the issue and/or close the issue:

See #23
Resolves #45

Pushing

Once your changes are committed, they are in your repository. In order to share these changes with the team, and potentially merge them into the default branch, you will next want to push your branch to the server.

git push -u origin 98-fix-floating-point-regs

In the above command, origin is the name of the remote that you want to push to. In the simple case, you will only have one, and it will be named origin. If you have more than one, be sure to use the right name here.

98-fix-floating-point-regs is the branch name to use on the server. Usually, you will want this to match the name you used locally to keep it simple.

After you have pushed, you may make additional commits locally. Since the remote branch is already setup, subsequent pushes can just use:

git push

If you make a non-backwards compatible change to your local branch, for example by editing a commit that has already been pushed, you will need to force push to the server:

git push -f

Be careful doing this if anyone else has already pulled your branch from the server, as it will cause conflicts and be a real pain to cleanup.

When you push to GitLab, in the output, you will see a link to create a merge request for merging your branch into the default branch:

remote: To create a merge request for docs-new-merge-request, visit:
remote: https://gitlab-instance.com/my-group/my-project/merge_requests/new?merge_request%5Bsource_branch%5D=my-new-branch

You can also open a merge request using the web interface [https://gitlab.futurewei.com/swlab/swe/v8/merge_requests/new].

Checking Current Status

At any time, you may want to see what the current status of your local repository is. At the highest level, you may want to use:

git status

The will show you what branch you are currently on, what files are staged, what files are changed, and what files are untracked.

$ git status
On branch 56-riscv-specific
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 modified: src/base/platform/platform-posix.cc
 modified: src/builtins/builtins-sharedarraybuffer-gen.cc
 modified: src/codegen/interface-descriptors.cc
 modified: src/codegen/riscv/interface-descriptors-riscv.cc

Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: src/codegen/interface-descriptors.cc
 modified: src/codegen/reloc-info.cc
 modified: src/common/globals.h
 modified: src/compiler/c-linkage.cc

Untracked files:
 (use "git add <file>..." to include in what will be committed)

 out.txt

To see more detail, you may want to use:

git diff

This will show a diff of all unstaged changes in the branch.

To show the diff of staged changes, use:

git diff --staged

To show the difference between your current source and another branch, use:

git diff riscv-porting-dev

Stashing Changes

Sometimes, you may want to temporarily hide un-committed changes in your repository to test something, switch to a different branch, pull new commits from the server, etc. Git provides the “stash” feature for this. Temporarily stash your changes with:

git stash

Then when you want to restore those changes, use:

git stash pop

The stash is a stack of changesets, so you can push and pop multiple levels of changes there. Be careful, because it is easy to lose track of what is in these stashes.

Rebasing a Branch

If you have been working on a feature for a while, there is a good chance that the default branch has changed since you first created your branch. In order to merge your branch in, you’ll need to rebase it. Rebasing is the process of moving the changes in your branch onto the top of another branch. The image from this tutorial [https://gcapes.github.io/git-course/10-rebasing/] helps show what happens when rebasing.

[image: ../../_images/git-rebase.svg]git rebase

To rebase your branch, take the following steps.

First, pull the latest version of the default branch:

git checkout riscv-porting-dev
git pull

Next, switch back to your branch:

git checkout your-branch

Now, initiate the rebase:

git rebase riscv-porting-dev

In the best case, there are no conflicts and the rebase is complete:

$ git rebase riscv-porting-dev
First, rewinding head to replay your work on top of it...
Applying: Cleanup MIPS comments in RISC-V code

However, if there are conflicts between the new changes in the default branch and your changes in your branch, you will have to manually resolve those conflicts.

$ git rebase riscv-porting-dev
First, rewinding head to replay your work on top of it...
Applying: Cleanup MIPS comments in RISC-V code
Applying: Cause a conflict
Using index info to reconstruct a base tree...
M src/codegen/riscv/macro-assembler-riscv.cc
Falling back to patching base and 3-way merge...
Auto-merging src/codegen/riscv/macro-assembler-riscv.cc
CONFLICT (content): Merge conflict in src/codegen/riscv/macro-assembler-riscv.cc
error: Failed to merge in the changes.
Patch failed at 0002 Cause a conflict
Use 'git am --show-current-patch' to see the failed patch

Resolve all conflicts manually, mark them as resolved with
"git add/rm <conflicted_files>", then run "git rebase --continue".
You can instead skip this commit: run "git rebase --skip".
To abort and get back to the state before "git rebase", run "git rebase --abort".

In the above output, we can see that there is a conflict in src/codegen/riscv/macro-assembler-riscv.cc. If this happens, edit the conflicting file(s) and look for the markers indicating the conflict:

void TurboAssembler::MovFromFloatResult(const DoubleRegister dst) {
<<<<<<< HEAD
 Move(dst, fa0); // Reg fa0 is FP return value.
=======
 Move(dst, fa0); // Reg xx0 is o32 ABI FP return value.
>>>>>>> Cause a conflict
}

Fix up any portions of the code where these markers are found (your editor may provide assistance for this) and save the file, then stage the file and continue the rebase:

git add src/codegen/riscv/macro-assembler-riscv.cc
git rebase --continue

If your fix of the conflict ends up deleting all changes from a commit, then you may see this message:

$ git rebase --continue
Applying: Cause a conflict
No changes - did you forget to use 'git add'?
If there is nothing left to stage, chances are that something else
already introduced the same changes; you might want to skip this patch.

Resolve all conflicts manually, mark them as resolved with
"git add/rm <conflicted_files>", then run "git rebase --continue".
You can instead skip this commit: run "git rebase --skip".
To abort and get back to the state before "git rebase", run "git rebase --abort".

In that case, you can skip this commit using (as suggested in the output):

git rebase --skip

Continue this process until the rebase finishes. While resolving conflicts, it is useful to use git status to see which files still need to be resolved:

$ git status
interactive rebase in progress; onto 5b74fd6126
Last commands done (2 commands done):
 pick 6aae986e4e Cleanup MIPS comments in RISC-V code
 pick 0fb2b85615 Cause a conflict
No commands remaining.
You are currently rebasing branch '56-riscv-specific' on '5b74fd6126'.
 (fix conflicts and then run "git rebase --continue")
 (use "git rebase --skip" to skip this patch)
 (use "git rebase --abort" to check out the original branch)

Unmerged paths:
 (use "git reset HEAD <file>..." to unstage)
 (use "git add <file>..." to mark resolution)

 both modified: src/codegen/riscv/macro-assembler-riscv.cc

no changes added to commit (use "git add" and/or "git commit -a")

Applying Changes on Top

Sometimes, instead of rebasing, it is easier to manually apply your commit on top of the latest changes. We can use the cherry-picking functionality to do that. First, you will want to create a backup of your branch, then delete the original:

git branch your-branch-backup
git branch -D your-branch

Now, recreate your branch as a clone of the latest default branch:

git checkout riscv-porting-dev
git pull
git checkout -b your-branch

Now, you want to get the identifiers of your old commits, and cherry-pick them onto the current branch. You can get the commit identifier using git log, it is the hex string next to the word “commit”:

git log your-branch-backup

Now that you have the commit ids that you need, cherry pick them into this branch:

git cherry-pick 5b74fd6126aadc09ca43b3c92786ae404ea34a44

This may also cause a conflict, like the rebase process, but since the conflict is only between your change and the latest changes (and not some intermediate change) it is often easier to resolve.

The Nuclear Option

Occasionally, you may mess up your local branch beyond recovery and just want to get back to what is on the server. The following command will do that, but be careful because your local changes will not be recoverable.

git reset -- hard gitlab/riscv-porting-dev

In the above command, gitlab is the name of the remote server and riscv-porting-dev is the branch that you want to recover. This will replace the contents of your current branch with the contents of that branch on the server.

 Table of Content

	Cross compiling RISC-V header file location

	VSCode Setup

	Code Formatting

	.vscode/c_cpp_properties.json

	.vscode/launch.json

	.vscode/tasks.json

Table of contents generated with markdown-toc

Cross compiling RISC-V header file location

[
 "/opt/riscv/sysroot/usr/include",
 "/opt/riscv/riscv64-unknown-linux-gnu/include/c++/9.2.0"
]

VSCode Setup

VS Code will be the standard IDE for developers on this project. Install VS Code to your Windows machine via the download link at https://code.visualstudio.com/. It is recommended to connect VS Code to a directory setup on a remote linux machine via SSH. To do this, install the “Remote - SSH” extension for VS Code and configure it to connect to your server (see here [https://code.visualstudio.com/docs/remote/ssh] for detailed instructions).

VS Code uses configuration files in the .vscode directory at the root of your project. These files are not checked into the repository, but setting that we have found useful are described below. Add these files to your project’s .vscode/ directory as desired.

Code Formatting

In order to enforce consistency and avoid issues with formatting in merges and reviews, we will all format our code using clang-format. Install the Clang-Format extension in VS Code, then use the “Format Document” command (Alt-Shift-F by default) to format all files before commiting. We will be using the LLVM format settings.

You may need to add the following to your settings to ensure that the LLVM format settings are used:

 "C_Cpp.clang_format_style": "LLVM",

You can add the setting by search for “C_Cpp.clang_format_style” in settings and put in “LLVM”.

.vscode/c_cpp_properties.json

This file defines setting specific to the C/C++ configuration. To get the best results from Intellisense, the settings here have been found to work well.

	intelliSenseMode: If I leave it as ${default} or set to gcc-x64 it will define __x86_64__ and mess up a lot of following macro definition. Setting to gcc-x86 seems ok.

{
 "configurations": [
 {
 "name": "RISCV64GC",
 "defines": ["__riscv", "__riscv_xlen=64", "USE_SIGNALS"],
 "intelliSenseMode": "gcc-x86",
 "compilerPath": "/opt/riscv/bin/riscv64-unknown-linux-gnu-g++",
 "cStandard": "c11",
 "cppStandard": "c++17",
 "includePath": ["${default}", "${workspaceFolder}"]
 }
],
 "version": 4
}

.vscode/launch.json

This file allows us to define launch configurations, to trigger a debug session. I have defined two configurations, one for debugging the mksnapshot and one for debugging unit tests. For unit test debugging, change the argument as needed, depending on which test you would like to debug. These can be launched via the Debug menu or the “Run and Debug” side bar.

{
 "version": "0.2.0",
 "configurations": [
 {
 "name": "(gdb) mksnapshot",
 "type": "cppdbg",
 "request": "launch",
 "program": "${workspaceFolder}/out.gn/riscv64_debug/mksnapshot",
 "args": ["--turbo_instruction_scheduling", "--target_os=linux", "--target_arch=x64", "--embedded_src", "gen/embedded.S", "--target_is_simulator", "--embedded_variant", "Default", "--random-seed", "314159265", "--startup_blob", "snapshot_blob.bin", "--native-code-counters", "--verify-heap"],
 "stopAtEntry": false,
 "cwd": "${workspaceFolder}/out.gn/riscv64_debug",
 "environment": [],
 "externalConsole": false,
 "MIMode": "gdb",
 "setupCommands": [
 {
 "description": "Enable pretty-printing for gdb",
 "text": "-enable-pretty-printing",
 "ignoreFailures": true
 }
]
 },
 {
 "name": "(gdb) cctest",
 "type": "cppdbg",
 "request": "launch",
 "program": "${workspaceFolder}/out.gn/riscv64_debug/cctest",
 "args": [
 "test-assembler-riscv/RISCV5"
],
 "stopAtEntry": false,
 "cwd": "${workspaceFolder}/out.gn/riscv64_debug",
 "environment": [],
 "externalConsole": false,
 "MIMode": "gdb",
 "setupCommands": [
 {
 "description": "Enable pretty-printing for gdb",
 "text": "-enable-pretty-printing",
 "ignoreFailures": true
 }
]
 }
]
}

.vscode/tasks.json

This file configures the build task and test task which can be triggered with keyboard shortcuts to build and test the project. The configuration shown here builds everything with the ninja -j16 command. Errors from the build show in the terminal and can be Ctrl-clicked to jump to the location in the source code. The test task runs the test-simple-riscv and test-assembler-riscv cctests.

{
 // See https://go.microsoft.com/fwlink/?LinkId=733558
 // for the documentation about the tasks.json format
 "version": "2.0.0",
 "tasks": [
 {
 "label": "build all",
 "type": "shell",
 "command": "ninja -j16",
 "group": {
 "kind": "build",
 "isDefault": true
 },
 "problemMatcher": {
 "base": "$gcc",
 "fileLocation": [
 "relative",
 "${workspaceRoot}/out.gn/riscv64_debug"
]
 },
 "options": {
 "cwd": "${workspaceRoot}/out.gn/riscv64_debug"
 }
 },
 {
 "label": "cctests",
 "type": "shell",
 "command": "tools/run-tests.py --outdir=out.gn/riscv64_debug cctest/test-simple-riscv/* cctest/test-assembler-riscv/*",
 "group": {
 "kind": "test",
 "isDefault": true
 },
 "problemMatcher": {
 "base": "$gcc",
 "fileLocation": [
 "relative",
 "${workspaceRoot}/out.gn/riscv64_debug"
]
 },
 }
]
}

 There is still a long way to go before we can deliver a high-performing V8 that supports a variety of RISC-V hardware with a wide range of ISA extensions. We define the following areas of work. Among them, Testing & Tools and Native build enablement are most urgently needed.

Testing & Tools

Since debugging generated codes in V8 can be extremely time-consuming, it is especially important to expose bugs in simpler and smaller tests. V8 already provides an extensive set of test suites and testing tools (including fuzzing tools). However, we currently only test the default configuration of tools/run_tests.py. We should leverage the different test options of existing tools to stress tests our port to expose bugs earlier.

On the tooling side, we have only explored a few of the tools provided by V8 such as run_test.py and the debugger interface. We shall also look into enabling or developing debugging tools, trace analysis tools (e.g., tools/riscv/analyze.py), profiling tools to further improve our productivity. Some of the tools are important to later performance optimizations as well. For instance, we consider to extend our trace analysis tools to identify inefficient sequences of instructions from the simulator traces.

This work is immediately needed as it impacts the quality of our code-base and our daily productivity.

Cross-compiled run enablement

This work will focus on enabling RISC-V port using the native build (instead of the simulated build). We would like to first bring up native build v8-riscv in QEMU, then on real RISC-V board. The goal is to achieve a similar test success rate on the native build in on the simulated build.

The native build also enables us to bring up more interesting applications that may not be possible under the simulated build (e.g., Node)

This work is immediately needed because a functioning native build is the real Minimal Viable Product (MVP) that an early adopter of v8-riscv will want to try out. While the simulated build makes a lot of sense for us V8 developers, it is not the case for users of V8.

Upstreaming preparation

This work focuses on bringing the quality of v8-riscv to meet V8’s upstreaming criteria. We also need to rebase to the latest V8 before upstreaming.

RISC-V 32-bit support

Currently, we focus on evaluating the feasibility and benefit of a 32-bit support (details see issue #109 [https://github.com/riscv/v8/issues/109]).

This work focuses on adding a new backend for RISC-V 32-bit. Following the convention of V8, 32- and 64-bit backends are completely separate backends. It involves a lot of backend development, but can leverage (copy) much of the RISC-V 64-bit backend code-base. Therefore, it better happens after we have a stable 64-bit native build.

This work requires good developers with strong software engineering skills and be reasonably familiar with the current RISC-V backend codebase. The priority of this work depends on community needs. If there is a strong need for a 32-bit backend, we may move up the priority.

Performance & optimization

The optimization work involves code generation optimization to improve either performance or code size. And for performance, we can start by improving dynamic instruction counts in the simulated build, and then moving onto improving actual execution time in the native build. Code size optimization is also critical for some of the smaller devices and sometimes may make or break a particular application bring-up.

The performance work involves performance analysis and benchmarking. This is the work that would allow us to quote the performance numbers of our v8-riscv port and will continue forever as there is always a need for better performance. We may need to develop or enable tools to aid our performance debugging.

Other ISA extensions

Currently, v8-riscv only supports the basic instruction set (RV64I and M, A, F, D, Zicsr, Zifence extensions) that is absolutely needed for a functioning V8 backend. Beyond that, the C extension (compressed instruction set) is critical in producing smaller binaries. And V (vector) extensions are critical for supporting interesting multi-media or ML workload through V8’s WebAssembly engine.

We may also need to design the software architecture to support certain vendor-specific hardware extensions while preserving the portability of V8.

Application bring up

This work focuses on bringing up important JS or Web Assembly workload for demo, benchmarking, or product purposes. One possible first major application to bring up is NodeJS. Certain Web Assembly applications may also be good candidate for early bring-up.

Documentation

	Home

	Getting Started

	Get the source

	Cross-compiled build

	Simulator build

	Run tests

	Project Management

	Project roadmap

	Monthly milestones

	Testing status

	Work groups

	[[Upstream Workflow]]

	For Developers

	Setup VSCode

	How to contribute

	How to debug V8

	RISC-V Backend Design Doc

	Understand V8 backend architecture

	How to add a new instruction

	Community operation

	Join our Slack [https://forms.office.com/Pages/ResponsePage.aspx?id=8o_uD7KjGECcdTodVZH-3OiciJKG_BJHrqMNgnsFFqtUNlRUNEQ5QUgxNk0wVEVaTjJBTDNOMDNIQS4u]

	Attend developer meetings

	Content sharing

 a hand on guide could be found here [https://developers.redhat.com/blog/2019/03/18/rpm-packaging-guide-creating-rpm/].

more detailed ref is rpm-packaging-guide [https://rpm-packaging-guide.github.io/]

for the v8-riscv/v8 project, things are a little different: the source code are cross-compiled, and we just tar the binary files.

Steps:

	clone the v8-riscv project and cross compiled using riscv-gnu-toolchain. you get d8 and snapshot_blob.bin.

	create folders and spec file like v8-riscv-fedora [https://github.com/isrc-cas/v8-riscv-fedora]

	put the d8 and other new compiled files into the destination you want.

	check the spec file, update release notes if you like.

	run rpmbuild -bb d8.spec in the v8-riscv-fedora folder. you nay need yum install rpmdevtools to install rpm tools.

if you want publish

	A good place is github release actions. you can download the rpm after the github Actions done.

	Anyone could upload the rpm files to HTTP/FTP mirroring sites. You may need to create a sign-key to sign the files on the mirror site.

 _images/board6.png
Num 10 default Left-upper corner pinl Num 10 default

1 3v3 2 3v3
3 PORTA16 3v3
5 PORTA17 GND
7 PORTA18 NC
9 GND 10 NC
11 PORTA19 12 NC
13 PORTA20 14 GND
15 PORTA21 16 NC
17 3v3 18 NC
19 PORTA22 20 GND
21 PORTA23 22 NC
23 PORTA24 24 NC
25 GND 26 NC
27 PORTA25 28 NC
29 PORTA26 30 GND
31 PORTA27 32 NC
3 PORTA28 34 GND
35 PORTA29 36 NC
37 PORTA30 38 NC
39 GND 40 PORTA31

_images/board7.png
59
=== o
l Shared 10 I 1,

S e :
|

42

1

chip_wake_up.

1 sharedio |
——— ﬁg&'ﬁr‘mﬂ

_ Confidential

N

_images/board4.png
Pygmy_esly EVB expansion port

3.3V level 4 5
i
Pygmy-e EVB Hardware expansion & debug port O
pin header pitch 2.54mm usaRr R [y dﬂ/& usaTz RX
Function Description Designator 3
1TAG 19 200 |
Debug
TEST-IO 18 L
SPIMO & 12C0 n7
UART1 & UART2 16 on
asPl 1s - &
Expansion port B
SPIS(SPI slave) & RESET & WAKEUP 21 o .
expansion port1 40pin(silk I0XX mean SHARED 10 num) J28 Rttty .
frorermesie o BLCCDC PO
expansion port2 40pin(silk I0XX mean SHARED 10 num) 129 o
n 5 o
A T i
) = , o
] *— | — o
= e ok wsn
vl e ol e o =& o
5P iSO - 102.§ SHARED_11_MOSI
] = o o [e -
=) s] oo son 2 G

_images/board5.png
Num

LNV W R

10 default
3v3
12C1_SDA
12C1_CLK
UARTO_CTS
GND
UARTO_RTS
UART3_RX
UART3_TX
3v3
spim1_mosi
spim1_miso
spim1_sclk_out
GND
12C2_SDA
PORTAS
PORTA6
PORTA10
PORTA11
PORTA12
GND

Left-upper corner

Num

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

10 default
3v3
3v3
GND

UARTO_TX

UARTO_RX

PORTA8
GND
BOOT_FSM
BOOT_FLASH
GND
PORTA4
spim1_ss
PORTA7
12C2_scL
GND
PORTA9
GND

PORTA13

PORTA14

PORTA15

_images/core_overview.png
IF

ID

EX

MA

npc

Exception

Bypass

misalign

PC

Buffer

Instruction

Illegall

inst

compressed

Loop
Buffer

ecoder

decoder

misalign

ICache

>

Branch
Unit

CSR

Multiplier/

Divider

Float point

—— Unit

Load/Store

Logic

Scoreboard

Register

File

Load
Store
addr

DTLB

DCache

wB

_images/ds1.png
GDB function:

RUN, STOP,
EXAMINE, CHANGE

<«——f> GDBlikely

Debugg
stc code]
ouild
2
el
¥
T
upgrade debug-socket
l $ HOST
emulator simulator soc
TARGET|

READY

_images/board8.png
Pygmy_es1y EVB boot configuration

0O BOOT MODE

4 Boot from SPIS

4 Boot from SPIM Flash

4 Boot from test io

4 Boot from JTAG(Not use now)

Boot mode configuration

BOOT1 BOOTO Boot mode Aliasing
BOOT_FROM_FLASH BOOT_FSM_MODE
X X TEST-I0/JTAG
0(on) 1(off) SPIS Enable bootup from SPIS(spi slave)
1(off) 0(on) SPIM Enable bootup from spi flash

_images/board9.png
O BOOT MODE SWITCH Seting O Boot from SPIS Seting(if used)
@ Boot from SPIS @ (use onboard microusb->spi dongle)
@ Boot from SPIM Flash

_images/ds2.png
Debug Host

Debug Transport
Hardware
(eg. JTAG debug probe)

Debugger Debug Translator
(eg. gdb) (eg. OpenOCD)

RISC-V Platform

Debug Module Debug Transport
Debug Module (DM) Interface (DM1) Module (DTM)

reset/halt
control

RISC-V Core

commands Hardware Thread

Hardware
Trigger
Module

Program
| Buffer (4B-64B)

Figure 2.1: RISC-V Debug System Overview

_images/ds3.png
e o “

jtag
GDB e urapped co signal

Tomote_bitbang fesvrasocket

Iﬂebug Host

T

Jtag2axi(ip)

picrorio

o lobus

Picrorio_Core

picrorio_system

_images/board11.png
Pygmy_es1y EVB debug---UART1

4 Please refer to “Pygmy_es1y EVB Hardware configuration”
@ Use Microusb->UART1

Pygmy_es1y EVB debug---TEST_IO

@ Please refer to “Pygmy_esly EVB Hardware configuration”
4 Need connect TEST_IO and RESET to FPGA or debug dongle.
> TEST_IO_CLK

» TEST_IO_DATA

» TEST_IO_EN

» RESET(for remote debug)

_images/board2.png
Cross section view

RIVAI

ES1Y 1.0

ES1¥ 1.0 SoC SOC

(Pygmy) die
.

Top View Bottom View

_images/board1.png
Pygmy_ES1Y chip Introduction

Always-on 32-bit CPU

RISC-V ORV32
ORVa2IMC
L iCache

Tom

System Control

64-bit CPU Cluster

RISC-V ORV64.
RISC-V ORV64.
RISC-V ORV64

RISC-V ORV64

'ORVG4 GC + Vector(32°FP16)

Internal Memory

L2 Cache: 512KB.

External Memory

Lp-DDR4 Controller

Connectivity

Pygmy-esly chip Spe

RISC-V CPU Core

Memory

Interface

sys_refclk
sys_rteclk
ush_refelk
POWER
Package

~CPU Frequency 400MHz,
~1*ORV32IMC, 4*ORV64GC,
~4*512bit Vector, 5 level pipeline,
—L1: 8KB/Core, L2: 512KB.

~1* 16bit LPDDR4 controller
~USB3.0 *1(device/slave)
~SDI3.0 *1

~12€*3

~SPI *1(slave)

—QsPI*1

~SPI*3

~UART *4(one support 4 wires)
125 *7(one tx,six rx)

~PWM *8

~GPIO *32

external oscillator 1.8V,20MHz
external oscillator 1.8V,32.768KHz
external oscillator, 1.8V,100MHz
~core 0.9V,10 1.8V,LPDDR4 1.1V
~15mm*15mm,LFBGA324

Ragsn

© 2020 £ ETF - Confidential

_images/board10.png
Interface Switch Seting(SW11)

EN SEL DIR Level
ON ON FMC 1v8
ON OFF PIN Header 3v3

R282 [
EN SEL DIR
ON ON FMC(1VE)
|on OFF PIN Header(3v3)

_images/board3.png
Physical Footprint
cPU
os

Memory

LPDDR4 DRAM
Micro USB
TYPE-C

Power Source

212.5mm*109mm

PYGMY-ES1Y RISC-V core 400MHz
Linux

SPI 16MB

TF card

2GB(512Mb*32)
USB->UART1&SPIS(debug)
USB3.0&USB2.0(device/slave)

12 volt @24

nav.xhtml

 Table of Contents

 		
 PicoRio User Manual

 		
 General Documentation

 		
 Introduction

 		
 What is PicoRio

 		
 Motivation

 		
 Highlights

 		
 Project Roadmap

 		
 Three Phases of the PicoRio Development

 		
 FAQ

 		
 How is PicoRio compared to Raspberry Pi?

 		
 Hardware Projects

 		
 Software Projects

_images/internal_memory_blockdiagram4.png
ORV64 Core

1 data LTinst
cache cache
256 bits * 2 (rea/resp)

CPU NoC

256 bits * 2 (req/resp}*

L2 Cache bank control

L2 Cache Bank

64 bits * 2 (reg/resp) %

Mem NoC

64 bits * 2 (req/resp) %

Main Memory

_images/l2_1.png
CPU NoC

II L2 Cache bank control

L2 Cache Bank x4

Mem NoC

_images/hwstack_blockdiagram_stage3.png
Always-on 32-bit CPU 64-bit CPU Cluster Display Pipeline

play Core
GPI

RRV32IMC
RRVG4 GC
LiCache T
opFP Amo s
Video

System Control Internal Memory Connectivity Camera Interface

e W rovercone | T [om0 W oo |

External Memory MPICSIx2

o] e isp
e | e | icoene || wrisoza |

_images/internal_memory_blockdiagram3.png
64-bit CPU Cluster

Core 0 Core 1 Core 2
T TTinst TTnst
cache cache cache

CPU NoC

=

L2 Cache bank control

L2 Cache Bank x4

- 9T ,

Mem NoC

3

Memory

_static/file.png

_images/l2_2.png
stage 1

] Valid
1 RAM

stage 2

Tag

stage 3

Data

L2 MSHR

Reqsto Memory_| NoC AXlinterface

L2 BANK

MSHR Bank x4

_static/minus.png

_static/picoriologo.png

_static/plus.png

